Molienda asistida con microondas de un coque metalúrgico
DOI:
https://doi.org/10.3989/revmetalm.013Palabras clave:
Ahorro de energía, Choque térmico, Coque, Microondas, MoliendaResumen
Los coques metalúrgicos están compuestos mayoritariamente de carbono grafítico (s2p2) y diferentes compuestos inorgánicos con distintas capacidades de absorber la radiación de microondas. Cuando se irradian con microondas fragmentos de estos coques, algunas partes de las partículas experimentan un rápido calentamiento, mientras otras no. Además, debido a que el coque presenta una cierta conductividad eléctrica, al ser irradiados con microondas se producen de forma puntual arcos eléctricos o microplasmas, dando lugar a puntos muy calientes. Como consecuencia de las diferentes dilataciones y tensiones producidas por el choque térmico, se producen en las partículas pequeñas grietas y microfisuras. Esto produce una mayor fragilidad en las partículas de coque y un incremento en la molturabilidad de las mismas. En el presente artículo se estudia la molienda de coque asistida con microondas y se evalúan las mejoras en la molturabilidad y el ahorro de energía producido.
Descargas
Citas
Babich, A., Yaroshevskii, S., Garc.a, L., Formoso, A., Cores, A., Isidro, A., Ferreira, S. (1996). Technological improvements in the pulverized coal injection process in the blast furnace. Rev. Metal. 32 (2), 103–116. http://dx.doi.org/10.3989/revmetalm.1996.v32.i2.921
Chenje, T.W., Simbi, D.J., Navara, E. (2003). Wear performance and cost effectiveness - A criterion for the selection of grinding media for wet milling in mineral processing operations. Miner. Eng. 16 (12), 1387–1390. http://dx.doi.org/10.1016/j.mineng.2003.08.009
Chenje, T.W., Simbi, D.J., Navara, E. (2004). Relationship between microstructure, hardness, impact toughness and wear performance of selected grinding media for mineral ore milling operations. Mater. Des. 25 (1), 11–18. http://dx.doi.org/10.1016/S0261-3069(03)00168-7
Church, R.H., Webb, W.E., Salsman, J.B. (1988). Dielectric properties of low-loss minerals. U. S. Bureau of Mines. Report of Investigations. Report 9194.
Didenko, A.N., Zverev, B.V., Prokopenko, A.V. (2005). Microwave fracturing and grinding of solid rocks by example of kimberlite. Doklady Physics 50 (7), 349–350. http://dx.doi.org/10.1134/1.2005358
Fitzgibbon, K.E., Veasey, T.J. (1990). Thermally assisted liberation - a review. Miner. Eng. 3 (1–2), 181–185. http://dx.doi.org/10.1016/0892-6875(90)90090-X
Güng.r, A., Atalay, .. (1998). Microwave processing and grindability. Innovations in Mineral and Coal Processing. Innovations in Mineral and Coal Processing: Proceedings of the 7th International Mineral Processing Symposium, Istanbul, 13–16.
Hearson, H.R. (1922). The Manufacture of Iron and Steel; E & F. N. Spon Ltd., London, UK.
Holman, B.W. (1926). Heat treatment as an agent in rock breaking. Trans. Inst. Min. Metall. 36, 219–234.
Kingman, S.W., Rowson, N.A. (1998). Microwave treatment of minerals - a review. Miner. Eng. 11 (11), 1081–1087. http://dx.doi.org/10.1016/S0892-6875(98)00094-6
Kingman, S.W., Vorster, W., Rowson, N.A. (2000). The influence of mineralogy on microwave assisted grinding. Miner. Eng. 13 (3), 313–327. http://dx.doi.org/10.1016/S0892-6875(00)00010-8
Kingman, S.W., Jackson, K., Cumbane, A., Bradshaw, S.M., Rowson, N.A., Greenwood, R. (2004). Recent developments in microwave assisted comminution. Int. J. Miner. Process. 74 (1–4), 71–83. http://dx.doi.org/10.1016/j.minpro.2003.09.006
Krestou, A., Panias, D. (2004). 1st International Conference on Advances in Mineral Resources Management and Environmental Geotechnology Hania, Greece, 215–220.
Lester, E., Kingman, S. (2004). The effect of microwave preheating on five different coals. Fuel 83 (14–15), 1941–1947. http://dx.doi.org/10.1016/j.fuel.2004.05.006
Lester, E., Kingman, S., Dodds, C. (2005). Increased coal grindability as a result of microwave pretreatment at economic energy inputs. Fuel 84 (4), 423–427. http://dx.doi.org/10.1016/j.fuel.2004.09.019
Lester, E., Kingman, S., Dodds, C., Patrick, J. (2006). The potential for rapid coke making using microwave energy. Fuel 85 (14–15), 2057–2063. http://dx.doi.org/10.1016/j.fuel.2006.04.012
Marland, S., Han, B., Merchant, A., Rowson, N. (2000). The effect of microwave radiation on coal grindability. Fuel 79 (11), 1283–1288. http://dx.doi.org/10.1016/S0016-2361(99)00285-9
Menéndez, J.A., Arenillas, A., Fidalgo, B., Fern.ndez, Y., Zubizarreta, L., Calvo, E.G., Berm.dez, J.M. (2010). Microwave heating processes involving carbon materials. Fuel Process. Technol. 91 (1), 1–8. http://dx.doi.org/10.1016/j.fuproc.2009.08.021
Mular, A.L., Bhappu, R.B. (1982). Dise-o de plantas de proceso de minerales, Madrid.
Schubert, U.S., Hoogenboom, R., Wilms, T.F.A., Erdmenger, T. (2009). Microwave-assisted chemistry: a closer look at heating efficiency. Aust. J. Chem. 62 (3), 236–243. http://dx.doi.org/10.1071/CH08503
Stoltze, S. (2000). The use of pet coke in cement manufacturing plants: Presentation of industrial cases of grinding and firing of pet coke. 11th International Cement Conference Hammamet, Tunisie, 9.
Wills, B.A., Napier-Munn, T. (2006). Wills mineral processing technology: an introduction to the practical aspects of ore treatment and mineral recovery. Butterworth-Heinemann, 2006.
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2014 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.
Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Consulte la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.