Study of the sintering behavior of fine, ultrafine and nanocrystalline WC-Co mixtures obtained by high energy milling

Authors

  • M. D. Salvador Instituto de Tecnología de Materiales (ITM), Universidad Politécnica de Valencia
  • V. Bonache Instituto de Tecnología de Materiales (ITM), Universidad Politécnica de Valencia
  • V. Amigó Instituto de Tecnología de Materiales (ITM), Universidad Politécnica de Valencia
  • D. Busquets Instituto de Tecnología de Materiales (ITM), Universidad Politécnica de Valencia

DOI:

https://doi.org/10.3989/revmetalm.0757

Keywords:

WC-Co, High energy ball milling, Nanocrystalline powders, HIP, Grain growth

Abstract


In this work the sintering behaviour of fine, ultrafine and nanocrystalline WC-12Co mixtures obtained by high energy milling, as well as commercial nanopowders, have been studied, in order to evaluate the effect of the particle size and the powder processing, in the densification, microstructural development and mechanical properties of the final product. The consolidation of the mixtures has been made by uniaxial pressing and sintering in vacuum, and by hot isostatic pressing. The sintered materials have been evaluated by measures of density, hardness and indentation fracture toughness, and microstructurally characterized by optical microscopy and scanning and transmission electronic microscopy (SEM and TEM). The results show the improvements in resistant behaviour of the materials obtained from nanocrystalline powders, in spite of the grain growth experienced during the sintering. The best results were obtained for the milling nanocrystalline material, which presents values of hardness higher than 1800 HV.

Downloads

Download data is not yet available.

References

[1] I. Azcona, A. Ordóñez, J.M. Sánchez y F. Castro, J. Mater. Sci. 37 (2002) 4.289-4.195.

[2] F. L. Zhang, C.Y. Wang y M. Zhu, Scr. Mater. 49 (2003) 1.121-1.128.

[3] C. Jia, L. Sun y H. Tang, X. Qu, Int. J. Refract. Met. H. 25 (2007) 53-56. doi:10.1016/j.ijrmhm.2005.11.003

[4] B.K. Kim, G.H. Ha y D.W. Lee, J. Mater. Proccess. Tech. 63 (1997) 317-321. doi:10.1016/S0924-0136(96)02748-3

[5] V. Chabretou, C.H. Allibert y J.M. Missiaen, J. Mater. Sci. 38 (2003) 2581-2590. doi:10.1023/A:1024418131674

[6] S. Berger, R. Porat y R. Rosen, Prog. Mater. Sci. 42 (1997) 311-320. doi:10.1016/S0079-6425(97)00021-2

[7] A. Parasiris y K.T. Hartwing, Int. J. Refract. Met. H. 18 (2000) 23-31. doi:10.1016/S0263-4368(00)00005-6

[8] L. Bartha, P. Atató y A.L.Tóth, J. Adv. Mater. 32 (2000) 23-26.

[9] W. D. Schubert, A. Bock y B. Lux, Int. J. Refract. Met. H. 13 (1995) 281-296. doi:10.1016/0263-4368(95)92674-9

[10] G. Gille, B. Szesny, K. Dreyer, H. van den Berg, J. Schmidt, T. Gestrich y G. Leitner, Int. J. Refract. Met. H. 20 (2002) 3–22. doi:10.1016/S0263-4368(01)00066-X

[11] G.Q. Shao, X.L. Duan, J.R. Xie, X.H. Yu, W.F. Zhang y R.Z. Yuan, Rev. Adv. Mater. Sci. 5 (2003) 381-286.

[12] R.K. Sadangi, L.E. McCandish, B.H. Kear y P. Seegopaul, Int. J. Powder Metall. 35 (1999) 27-33.

[13] D.F. Carroll, Int. J. Refract. Met. H. 17 (1999) 123-132. doi:10.1016/S0263-4368(98)00073-0

[14] Z. Fang, P. Maheshwai, Z. Wang, H.Y. Sohn, A. Griffo y R. Riley, Int. J. Refract. Met. H. 23 (2005) 249-257. doi:10.1016/j.ijrmhm.2005.04.014

[15] M.S. El-Eskandarany, A.A. Mahday, H.A. Ahmed y A.H. Amer, J. Alloy Compd. 312 (2000) 315–325.

[16] P. Seegopaul, L.E. McCandlish y F.M Shinneman, Int. J. Refract. Met. H. 15 [1-3] (1997) 133-138. doi:10.1016/S0263-4368(96)00044-3

[17] L.E. McCandish, H.B. Kear y J.S Bhatia, Patent EE. UU.,n° 5352269, 10-04-1994.

[18] Z. Zhang, Y. Zhang y M. Muhammed, Int. J. Re fract. Met. H. 20 (2002) 227-233.

[19] Z. Zhang, S Wahlberg, M Wang y M. Muhammed, Nanostruct. Mater. 12 (1999) 163-166. doi:10.1016/S0965-9773(99)00089-6

[20] M.A. Xueming, Z. Ling, J.I. Gang y D. Yuanda, J. Alloy Compd. 268 (1998) 267-270.

[21] S. Mi y T.H. Courtney, Scr. Mater. 38 [1] (1997) 171-176. doi:10.1016/S1359-6462(97)00410-7

[22] J. Sun, F. Zhang y J. Shen, Mater. Lett. 57 (2003) 3.140–3.148.

[23] P. Maheshwai, Z.Z. Fang y H.Y. Sohn, Int. J. Powder Metall. 43 (2007) 41-43.

[24] G.H. Lee y S. Kang, J. Alloy Compd. 416 (2006) 281-289.

[25] P. Harmat, I. Kotsis, L. Laczko y L. Bartha, Solid State Ionics 141–142 (2001) 157–161. doi:10.1016/S0167-2738(01)00769-X

[26] P. Arató, L. Barthe, R. Porat, S. Berger y A. Rosen, Nanostruct. Mater. 10 (1998) 245-255. doi:10.1016/S0965-9773(98)00067-1

[27] T. Yamamoto, Y. Ikuhara y T. Sakuma, Sci. Technol. Adv. Mater. 1 (2000) 97-104. doi:10.1016/S1468-6996(00)00006-1

[28] C.H. Allibert, Int. J. Refract. Met. H. 19 (2001) 53-61. doi:10.1016/S0263-4368(01)00004-X

[29] S. Lay, S. Hamar-Thibault y A. Lackner, Int. J. Refract. Met. H. 20 (2002) 61-69. doi:10.1016/S0263-4368(01)00071-3

[30] O. Seo, S.H. Kang y E.J. Lavernia, Mater. Trans. 44 (2003) 2.339-2.345.

[31] M. Elfwing y S. Norgren, Int. J. Refract. Met. H. 23 (2005) 242-248. doi:10.1016/j.ijrmhm.2005.03.006

[32] J.M. Sánchez, A. Ordóñez y R. González, Int. J. Refract. Met. H. 23 (2005) 193-198.

[33] S.I. Cha a, S.H. Hong y B.K. Kim, Mater. Sci. Eng. A 351 (2003) 31-38. doi:10.1016/S0921-5093(02)00605-6

[34] C.C. Jia, H. Tang, X.Z. Mei, F.Z. Yin y X.H. Qu, Mater. Lett. 59 (2005) 2.566-2.569.

[35] H.C. Kim, D.Y. Oh y I.J. Shon, Int. J. Refract. Met. H. 22 (2004) 197-203. doi:10.1016/j.ijrmhm.2004.06.006

[36] I. Azcona, A. Ordoñez, L. Dominguez y J.M. Sanchez, 15th Int. Plansee Seminar, 2, Reutte, 2001,G. Kneringer, P. Rodhammer, H. Wildner (Eds.) (2001) 35-49.

[37] ISO 3369:2006, Impermeable sintered metal materials and hardmetals. Determination of density.

[38] ISO 4505:1978, Hardmetals-Metallographic determination of porosity and uncombined carbon.

[39] ASTM E 112-96(2004), Standard Test Methods for Determining Average Grain Size.

[40] ISO 3878:1983, Hardmetals - Vickers hardness test.

[41] D. Shetty, I. Wright y P. Mincer, J. Mater. Sci. 20 (1985) 1.873-1.882.

[42] G. Gille, B. Szesny, K. Dreyer, H. Van Den Berg., J. Schmidt y T. Gestrich 15th Int. Plansee Seminar, 2, Reutte, 2001, G. Kneringer, P. Rödhammer and H. Wildner (Eds.) (2001) 782.

[43] S.H. Back, G.H. Lee y S. Kang, Mater. Trans. 46 [1] (2005) 105-110. doi:10.2320/matertrans.46.105

[44] R. Porat y S. Berguer y A. Rosen, Mater. Sci. Forum 225-227 (1996) 629-634 .

[45] K. Jia, T.E. Fischer y G. Gallois, Nanostruct. Mater. 10 (1998) 875-891. doi:10.1016/S0965-9773(98)00123-8

[46] W.D. Schubert, H. Neumeister, G. Kinger y B. Lux, Int. J. Refract. Met. H. 16 (1998) 133-142. doi:10.1016/S0263-4368(98)00028-6

Downloads

Published

2008-10-30

How to Cite

Salvador, M. D., Bonache, V., Amigó, V., & Busquets, D. (2008). Study of the sintering behavior of fine, ultrafine and nanocrystalline WC-Co mixtures obtained by high energy milling. Revista De Metalurgia, 44(5), 418–431. https://doi.org/10.3989/revmetalm.0757

Issue

Section

Articles

Most read articles by the same author(s)

1 2 3 > >>