Obtention, characterization and in vitro evaluation of polycaprolactone-chitosan coatings growth on chemically treated Ti6Al4V alloy
DOI:
https://doi.org/10.3989/revmetalm.021Keywords:
Bioactivity, Chitosan, Phosphate of calcium, Polycaprolactone, Ti6Al4VAbstract
Polymeric coatings were obtained polycaprolactone-chitosan. The coatings were applied by dip-coating technique, on Ti6Al4V substrates chemically treated with NaOH solution. Based on SEM morphological analysis and infrared spectra, it was observed that the amount of polycaprolactone in the coating obtained had an effect in retaining the chitosan on the surface, associated with the emission of R-OH bond and the morphological characteristics. Impedance spectra performed on the polymeric films showed phenomena related processes adsorption of ionic species to monolayer formation on the surface. These spectra showed equally charge transfer phenomena generated by the morphological characteristics of the coatings, such as its porosity, density and homogeneity. The coated substrate was immersing in SBF solution for 8 days, allowed to observe its adsorption capacity of calcium through nucleation and precipitation of calcium phosphates, bioactive character displaying a front medium.
Downloads
References
Bronzino, J. (2000). The biomedical engineering Handbook, Ed. CRS Taylor & Francis, USA, pp. 37–44.
Cottis, R., Turgoose, S. (1999). Electrochemical Impedance and Noise, B.C. Syrett, Series Editor, USA, pp. 2–4.
Echeverria, A., Arroyave, C. (2003). Evaluación electroquímica de algunas aleaciones para implantes dentales del tipo titanio y acero inoxidable. Rev. Metal. 39, 174–181.
Estupi-an, H. (2011). Tesis Doctoral, Facultad de Ingenierías Fisicoquímicas, Universidad Industrial de Santander. Colombia.
Kim, H., Miyaji, F., Kokubo, T. (1997). Effect of heat treatment on apatite-forming ability of Ti metal induced by alkali treatment. J. Mater. Sci.- Mater. M. 8 (6), 341–347. http://dx.doi.org/10.1023/A:1018524731409
Multigner, M., Fernández-Castrillo, P., Ferreira-Barragans, S., González-Doncel G., González-Carrasco, J. (2009). Influencia del arenado de la aleación Ti6Al4V en la dureza subsuperficial y estado de tensiones residuales. Rev. Metal. 45, 52–57. http://dx.doi.org/10.3989/revmetalm.0803
Oshida, Y. (2013). Bioscience and Bioengineering of Titanium Materials, 2° Ed. Elsevier, USA, pp. 35–85.
Paz, A., Martin, Y., Pazos, L., Parodi, M., Ybarra, G., González, J. (2011). Obtención de recubrimientos de hidroxiapatita sobre titanio mediante el método biomimético. Rev. Metal. 47, 138–146. http://dx.doi.org/10.3989/revmetalmadrid.1009
Peón, E., Jimenez-Morales, A., Fernandez-Escalente, E., Garcia-Alonso, M., Escudero, M., Galván, J. (2005). Recubrimientos de hidroxiapatita preparados mediante un proceso sol-gel. Rev. Metal. 41, 479–482. http://dx.doi.org/10.3989/revmetalm.2005.v41.iExtra.1080
Pok, S.W., Wallace, K., Madihally, S.V. (2010). In vitro characterization of polycaprolactone matrices generated in aqueous media. Acta Biomaterialia 6 (3), 1061–1068. http://dx.doi.org/10.1016/j.actbio.2009.08.002 PMid:19664731 PMCid:PMC2997440
Quintero, A. (2013). Trabajo de grado, Facultad de Ingenierías Fisicoquímicas, Universidad Industrial de Santander, Colombia.
Reddy, A. (2011). Tesis Doctoral, Facultad en Ciencias de Ingeniería Química, Jawaharlal Nehru Technological University, India.
Tojal, C., Amigo, V., Calero, J. (2013). Fabricación y caracterización de aleaciones porosas de Ti y Ti6Al4V producidas mediante sinterización con espaciador. Rev. Metal. 49, 20–30. http://dx.doi.org/10.3989/revmetalm.1206
Van der Schueren, L., Steyaert, I., Schoenmaker, B., Clerckl, K. (2012). Polycaprolactone/Chitosan blend nanofibers electrospun from an acetic acid/formic acid solvent system. Carbohyd. Polym. 88, 1221–1226. http://dx.doi.org/10.1016/j.carbpol.2012.01.085
Vera, M., Caridade, S., Alves, N., Mano, F.J. (2010). New poly(ecaprolactone)/ Chitosan blend fibers for tissue engineering applications. Acta Biomaterialia 6 (2), 418–428. http://dx.doi.org/10.1016/j.actbio.2009.07.012 PMid:19607943
Xuanyong, L., Chub, K., Chuanxian, D. (2004). Surface modification of titanium, titanium alloys, and related Materials for biomedical applications. Mat. Sci. Eng. R. 47 (3–4),49–121.
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the printed and online versions of this Journal are the property of Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a “Creative Commons Attribution 4.0 International” (CC BY 4.0) License. You may read the basic information and the legal text of the license. The indication of the CC BY 4.0 License must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the published by the Editor, is not allowed.