Obtention, characterization and in vitro evaluation of polycaprolactone-chitosan coatings growth on chemically treated Ti6Al4V alloy

Authors

  • Liliana S. Gómez Rodríguez Escuela de Ingeniería Metalúrgica, Universidad Industrial de Santander
  • Andrés F. Quintero Jaime Escuela de Ingeniería Metalúrgica, Universidad Industrial de Santander
  • Darío Y. Peña Ballesteros Escuela de Ingeniería Metalúrgica, Universidad Industrial de Santander
  • Hugo A. Estupiñan Durán Facultad de Minas, Universidad Nacional de Colombia

DOI:

https://doi.org/10.3989/revmetalm.021

Keywords:

Bioactivity, Chitosan, Phosphate of calcium, Polycaprolactone, Ti6Al4V

Abstract


Polymeric coatings were obtained polycaprolactone-chitosan. The coatings were applied by dip-coating technique, on Ti6Al4V substrates chemically treated with NaOH solution. Based on SEM morphological analysis and infrared spectra, it was observed that the amount of polycaprolactone in the coating obtained had an effect in retaining the chitosan on the surface, associated with the emission of R-OH bond and the morphological characteristics. Impedance spectra performed on the polymeric films showed phenomena related processes adsorption of ionic species to monolayer formation on the surface. These spectra showed equally charge transfer phenomena generated by the morphological characteristics of the coatings, such as its porosity, density and homogeneity. The coated substrate was immersing in SBF solution for 8 days, allowed to observe its adsorption capacity of calcium through nucleation and precipitation of calcium phosphates, bioactive character displaying a front medium.

Downloads

Download data is not yet available.

References

Bronzino, J. (2000). The biomedical engineering Handbook, Ed. CRS Taylor & Francis, USA, pp. 37–44.

Cottis, R., Turgoose, S. (1999). Electrochemical Impedance and Noise, B.C. Syrett, Series Editor, USA, pp. 2–4.

Echeverria, A., Arroyave, C. (2003). Evaluación electroquímica de algunas aleaciones para implantes dentales del tipo titanio y acero inoxidable. Rev. Metal. 39, 174–181.

Estupi-an, H. (2011). Tesis Doctoral, Facultad de Ingenierías Fisicoquímicas, Universidad Industrial de Santander. Colombia.

Kim, H., Miyaji, F., Kokubo, T. (1997). Effect of heat treatment on apatite-forming ability of Ti metal induced by alkali treatment. J. Mater. Sci.- Mater. M. 8 (6), 341–347. http://dx.doi.org/10.1023/A:1018524731409

Multigner, M., Fernández-Castrillo, P., Ferreira-Barragans, S., González-Doncel G., González-Carrasco, J. (2009). Influencia del arenado de la aleación Ti6Al4V en la dureza subsuperficial y estado de tensiones residuales. Rev. Metal. 45, 52–57. http://dx.doi.org/10.3989/revmetalm.0803

Oshida, Y. (2013). Bioscience and Bioengineering of Titanium Materials, 2° Ed. Elsevier, USA, pp. 35–85.

Paz, A., Martin, Y., Pazos, L., Parodi, M., Ybarra, G., González, J. (2011). Obtención de recubrimientos de hidroxiapatita sobre titanio mediante el método biomimético. Rev. Metal. 47, 138–146. http://dx.doi.org/10.3989/revmetalmadrid.1009

Peón, E., Jimenez-Morales, A., Fernandez-Escalente, E., Garcia-Alonso, M., Escudero, M., Galván, J. (2005). Recubrimientos de hidroxiapatita preparados mediante un proceso sol-gel. Rev. Metal. 41, 479–482. http://dx.doi.org/10.3989/revmetalm.2005.v41.iExtra.1080

Pok, S.W., Wallace, K., Madihally, S.V. (2010). In vitro characterization of polycaprolactone matrices generated in aqueous media. Acta Biomaterialia 6 (3), 1061–1068. http://dx.doi.org/10.1016/j.actbio.2009.08.002 PMid:19664731 PMCid:PMC2997440

Quintero, A. (2013). Trabajo de grado, Facultad de Ingenierías Fisicoquímicas, Universidad Industrial de Santander, Colombia.

Reddy, A. (2011). Tesis Doctoral, Facultad en Ciencias de Ingeniería Química, Jawaharlal Nehru Technological University, India.

Tojal, C., Amigo, V., Calero, J. (2013). Fabricación y caracterización de aleaciones porosas de Ti y Ti6Al4V producidas mediante sinterización con espaciador. Rev. Metal. 49, 20–30. http://dx.doi.org/10.3989/revmetalm.1206

Van der Schueren, L., Steyaert, I., Schoenmaker, B., Clerckl, K. (2012). Polycaprolactone/Chitosan blend nanofibers electrospun from an acetic acid/formic acid solvent system. Carbohyd. Polym. 88, 1221–1226. http://dx.doi.org/10.1016/j.carbpol.2012.01.085

Vera, M., Caridade, S., Alves, N., Mano, F.J. (2010). New poly(ecaprolactone)/ Chitosan blend fibers for tissue engineering applications. Acta Biomaterialia 6 (2), 418–428. http://dx.doi.org/10.1016/j.actbio.2009.07.012 PMid:19607943

Xuanyong, L., Chub, K., Chuanxian, D. (2004). Surface modification of titanium, titanium alloys, and related Materials for biomedical applications. Mat. Sci. Eng. R. 47 (3–4),49–121.

Published

2014-09-30

How to Cite

Gómez Rodríguez, L. S., Quintero Jaime, A. F., Peña Ballesteros, D. Y., & Estupiñan Durán, H. A. (2014). Obtention, characterization and in vitro evaluation of polycaprolactone-chitosan coatings growth on chemically treated Ti6Al4V alloy. Revista De Metalurgia, 50(3), e021. https://doi.org/10.3989/revmetalm.021

Issue

Section

Articles