Tensile properties and strengthening mechanisms of a TWIP steel at high strain rate: Hall-Petch relationship
DOI:
https://doi.org/10.3989/revmetalm.031Keywords:
Hall-Petch, Stacking fault energy, Twinning, TWIP, Work hardening rateAbstract
The influence of strain rate and grain size on the mechanical properties of a 22% Mn, 0.6% C (mass %) austenitic TWIP steel has been studied. A typical quasi-linear stress-strain behaviour of TWIP steels that deform by twinning has been observed at strain rates of 9.4 s−1 and 265 s−1 and room temperature. At high strain rates, the constant work - hardening rate region typically observed in TWIP steel clearly shortens. In addition, the Hall-Petch relationship has been obtained for each strain rate. The Hall-Petch slope KHP increases as a function of strain in all cases. The dependence of the KHP on the strain rate could be adiabatic heating.
Downloads
References
Apóstol, M., Vuoristo, T., Kuokkala, V.-T. (2003). High Temperature High Strain Rate Testing with a compressive SHPB. J. Phys. France IV 110, 459–464. http://dx.doi.org/10.1051/jp4:20020736
ASTM EOM-04 (2008). Standard Test Methods for Tension Testing of Metallic Materials.
Bouaziz, O., Allain, S., Scott, C. (2008). Effect of grain and twin boundaries on the hardening mechanisms of twinninginduced plasticity steels. Scripta Mater. 58 (6), 484–487. http://dx.doi.org/10.1016/j.scriptamat.2007.10.050
Christian, J.W., Laughlin, D.E. (1988). Overview no. 67 The deformation twinning of superlattice structures derived from disordered B.C.C. or F.C.C. solid solutions. Acta Metall. 36 (7), 1617–1642. http://dx.doi.org/10.1016/0001-6160(88)90230-1
Christian, J.W., Mahajan, S. (1995). Deformation twinning. Prog. Mater. Sci. 39 (1–2), 1–157. http://dx.doi.org/10.1016/0079-6425(94)00007-7
Cornette, D., Cugy, P., Hildenbrand, A., Bouzekri, M., Lovato, G. (2005). Ultra high strength FeMn TWIP steels for automotive safety parts. Rev. Metall-Paris CIT 102 (12), 905–918. http://dx.doi.org/10.1051/metal:2005151
Curtze, S., Kuokkala, V.-T. (2010). Effects of temperature and strain rate on the tensile properties of twip steels. Revista Matéria 15 (2), 157–163.
De las Cuevas, F., Reis, M., Ferraiuolo, A., Pratolongo, G., Karjalainen, L.P., Alkorta, J., Gil Sevillano, J. (2010a). Hall-Petch relationship of a TWIP steel. Key Eng. Mater. 423, 147–152. http://dx.doi.org/10.4028/www.scientific.net/KEM.423.147
De las Cuevas, F., Reis, M., Ferraiuolo, A., Pratolongo, G., Karjalainen, L.P., García Navas, V., Gil Sevillano, J. (2010b). Kinetics of recrystallization and grain growth of cold rolled TWIP steel. Adv. Mater. Res. 89–91, 153–158. http://dx.doi.org/10.4028/www.scientific.net/AMR.89-91.153
Ding, H., Tang, Z., Li, W., Wang, M., Song, D. (2006). Microstructures and Mechanical Properties of Fe-Mn-(Al, Si) TRIP/TWIP Steels. J. Iron Steel Res. Int. 13 (6), 66–70. http://dx.doi.org/10.1016/S1006-706X(06)60113-1
Frommeyer, G., Grassel, O. (1998). Light constructional steel and the use thereof. Patente PCT/EP98/04044. WO 99/01585 A1.
Frommeyer, G., Drewes, E.J., Engl, B. (2000). Physical and mechanical properties of iron-aluminium-(Mn, Si) lightweight steels. Rev. Metall-Paris 97 (10), 1245–1253. http://dx.doi.org/10.1051/metal:2000110
Galán, J., Samek, L., Verleysen, P., Verbeken, K., Houbaert, Y. (2012). Advanced high strength steels for automotive industry. Rev. Metal. 48 (2), 118–131. http://dx.doi.org/10.3989/revmetalm.1158
Gil Sevillano, J., de las Cuevas, F. (2012). Internal stresses and the mechanism of work hardening in twinning-induced plasticity steels. Scripta Mater. 66 (12), 978–981. http://dx.doi.org/10.1016/j.scriptamat.2012.02.019
Gil Sevillano, J., Van Houtte, P., Aernoudt, E. (1980). Large strain work hardening and textures. Prog. Mater. Sci. 25 (2–4), 69–134. http://dx.doi.org/10.1016/0079-6425(80)90001-8
Grässel, O., Frommeyer, G., Derder, D., Hofmann, H. (1997). Phase transformation and mechanical properties of Fe-Mn-Si-Al TRIP-steels. J. Phys. IV France 7, C5.383–C5.388.
Grässel, O., Kru.ger, L., Frommeyer, G., Meyer, L.W. (2000). High strength Fe-Mn-(Al, Si) TRIP/TWIP steels developmentproperties-application. Int. J. Plasticity. 16 (10–11). 1391–1409. http://dx.doi.org/10.1016/S0749-6419(00)00015-2
Hadfield, R.A. (1883). High manganese steel. British Patent, N° 200/1883.
Johnson, G.R., Cook, W.H. (1983). A constitutive model and data for metals subjected to large strains, high strain rates and hightemperatures. Proceedings of the Seventh Symposium on Ballistics. The Hague, The Netherlands, pp. 541–547.
Karaman, I., Sehitoglu, H., Gall, K., Chumlyakov, Y.I., Mayer, H.J. (2000). Deformation of single crystal Hadfield steel by twinning and slip. Acta Mater. 48 (6), 1345–1359. http://dx.doi.org/10.1016/S1359-6454(99)00383-3
Kim, T.W., Kim, Y.G. (1993). Properties of austenitic Fe-25Mn-1Al-0.3C alloy for automotive structural applications. Mater. Sci. Eng. A 160 (2), 13–15. http://dx.doi.org/10.1016/0921-5093(93)90463-O
Kocks, U.F., Mecking, H. (2003). Physics and phenomenology of strain hardening: the FCC case. Prog. Mater. Sci. 48, 171–273. PII: S0079-6425(02)00003-8. http://dx.doi.org/10.1016/S0079-6425(02)00003-8
Meyers, M.A., Vöhringer, O., Lubarda, V.A. (2001). The Onset of Twinning in Metals: A constitutive description. Acta Mater. 49 (19), 4025–4039. http://dx.doi.org/10.1016/S1359-6454(01)00300-7
Morris, D.G. (2010). The origins of strengthening in nanostructured metals and alloys. Rev. Metal. 46 (2), 173–186. http://dx.doi.org/10.3989/revmetalm.1008
Petch, N.J. (1953). The cleavage strength of polycrystals. J. Iron Steel Inst. 174, 25–28.
Petch, N.J. (1954). The fracture of metals. Prog. Metal Phys. 5, 1–52. http://dx.doi.org/10.1016/0502-8205(54)90003-9
Rodríguez, R.F., Jiménez, J.A., Adeva, P., Bohórquez, A., Pérez, G.A., Fernández, B.J., Chao, J. (1998). Propiedades mecánicas y mecanismos de deformación en aleaciones del sistema Fe–xMn–3.2Al–0.2C (12≤x≤43). Rev. Metal. 34, 362–366. http://dx.doi.org/10.3989/revmetalm.1998.v34.iExtra.772
Sellars, C.M., Higginson, R.L. (2003). Worked Examples in Quantitative Metallography. Ed. Maney Publishing, Cambridge MA, USA.
Taylor, G.I. (1938). Plastic Strain in Metals. J. Inst. Met., 62, 307–324.
Ueji, R., Harada, K., Tsuchida, N., Kunishige, K. (2007). High Speed Deformation of Ultrafine Grained TWIP Steel. Mater. Sci. Forum 561–565, 107–110. http://dx.doi.org/10.4028/www.scientific.net/MSF.561-565.107
Ueji, R., Tsuchida, N., Terada, D., Tsuji, N., Tanaka, Y., Takemura, A., Kunishige, K. (2008). Tensile properties and twinning behavior of high manganese austenitic steel with fine-grained structure. Scripta Mater. 59 (9), 963–966. http://dx.doi.org/10.1016/j.scriptamat.2008.06.050
Wang, Z.W., Wang, Y.B., Liao, X.Z., Zhao, Y.H., Lavernia, E.J., Zhu, Y.T. (2009). Influence of stacking fault energy on deformation mechanism and dislocation storage capacity in ultrafine-grained materials. Scripta Mater. 60 (1), 52–55. http://dx.doi.org/10.1016/j.scriptamat.2008.08.032
Xiong, R.-G., Fu, R.-Y., Su, Y., Li, Q., Wei, X.-C., Li, L. (2009). Tensile Properties of TWIP Steel at High Strain Rate. J. Iron Steel Res. Int. 16 (1), 81–86,21.
Xu, S., Ruan, D., Beynon, J.H., Rong, Y. (2013). Dynamic tensile behaviour of TWIP steel under intermediate strain rate loading. Mater. Sci. Eng. A 573, 132–140. http://dx.doi.org/10.1016/j.msea.2013.02.062
Zhao, Y.H., Zhu, Y.T., Liao, X.Z., Horita, Z., Langdon, T.G. (2007). Influence of stacking fault energy on the minimum grain size achieved in severe plastic deformation. Mater. Sci. Eng. A 463 (1–2), 22–26. http://dx.doi.org/10.1016/j.msea.2006.08.119
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the printed and online versions of this Journal are the property of Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.All contents of this electronic edition, except where otherwise noted, are distributed under a “Creative Commons Attribution 4.0 International” (CC BY 4.0) License. You may read here the basic information and the legal text of the license. The indication of the CC BY 4.0 License must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the published by the Editor, is not allowed.