Loss of ductility due to the decarburation and Mn depletion of a coarse-grained TWIP steel
DOI:
https://doi.org/10.3989/revmetalm.109Keywords:
Decarburization, Stacking fault energy (SFE), Twinning, TWIP steel, α’- martensite, γ – austeniteAbstract
A clear transition in the tensile ductility behavior has been observed for grain sizes D in the range of 15 μm - 20 μm (1.50 μm ≤ D < 50 μm) in a 22% Mn, 0.6% C (in mass %) TWIP steel. This behavior is a combination of the intrinsic effect of grain size D on strength and work hardening rate of the material, with an extrinsic effect, superficial decarburization and Mn depletion processes occurred during annealing treatments at T ≥ 1000 ºC. In the present work, this extrinsic effect happened in TWIP steel has been studied in depth. GDOES (Glow Discharge Optical Emission Spectrometry) analyses have been carried out in order to study quantitatively the C and Mn concentration profiles. The depth of surface decarburization has been modeled by using Birks-Jackson theory. Two micro-constituents have been observed via Ferritoscope into decarburized volume: α’-martensite and α-austenite. The ductility of coarse-grained TWIP steel, subjected for high annealing temperatures and long annealing times, declines as a consequence of the formation of α’-martensite and less stable α-austenite with lower stacking fault energy, SFE, due to the Mn depletion in the decarburized volume.
Downloads
References
Allain, S., Chateau, J.P., Bouaziz, O., Migot, S., Guelton, N. (2004). Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe–Mn–C alloys. Mater. Sci. Eng. A 387–389, 158–162. https://doi.org/10.1016/j.msea.2004.01.059
Ankem, S., Greene, C.A., Aiyangar, A.K. (1999). Recent developments in growth kinetics of deformation twins in bulk metallic materials. Proceedings of the Symposium. on Adv. in Twinning: The Minerals, Metals & Mater. Society, pp. 127–143.
Birks, N., Jackson, J. (1970). Quantitative treatment of simultaneous scaling and decarburization of steels. J. Iron Steel Inst. 208, 81–85.
Birks, N., Meier, G.H., Pettit, F.S. (2006). Introduction to the High-temperature Oxidation of Metals. 2nd Ed., Cambridge University Press, New York. https://doi.org/10.1017/CBO9781139163903
Bouaziz, O., Allain, S., Scott, C. (2008). Effect of grain and twin boundaries on the hardening mechanisms of twinning-induced plasticity steels. Scripta Mater. 58 (6), 484–487. https://doi.org/10.1016/j.scriptamat.2007.10.050
Bouaziz, O., Allain, S., Scott, C.P., Cugy, P., Barbier, D. (2011). High manganese austenitic twinning induced plasticity steels: A review of the microstructure properties relationships. Curr. Opin. Solid State Mater. Sci. 15 (4), 141–168. https://doi.org/10.1016/j.cossms.2011.04.002
Chen, L., Zhao, Y., Qin, X. (2013). Some Aspects of High Manganese Twinning-Induced Plasticity (TWIP) Steel, A Review. Acta Metall. Sin. 26 (1), 1–15. https://doi.org/10.1007/s40195-012-0501-x
Cornette, D., Cugy, P., Hildenbrand, A., Bouzekri, M., Lovato, G. (2005). Ultra high strength FeMn TWIP steels for automotive safety parts. Rev. Metall-Paris CIT 102 (12), 905–918. https://doi.org/10.1051/metal:2005151
De Cooman, B.C., Chin, K.-G., Kim, J.M. (2011). New Trends and Developments in Automotive System Engineering. High Mn TWIP Steels for Automotive Applications, Chapter 6, Editor Marcello Chiaberge.
De las Cuevas, F., Reis, M., Ferraiuolo, A., Pratolongo, G., Karjalainen, L.P., Alkorta, J., Gil Sevillano, J. (2010a). Hall-Petch relationship of a TWIP steel. Key Eng. Mater. 423, 147–152. http://dx.doi.org/10.4028/www.scientific.net/KEM.423.147. https://doi.org/10.4028/www.scientific.net/KEM.423.147
De las Cuevas, F., Reis, M., Ferraiuolo, A., Pratolongo, G., Karjalainen, L.P., García Navas, V., Gil Sevillano, J. (2010b). Kinetics of recrystallization and grain growth of cold rolled TWIP steel. Adv. Mater. Res. 89–91, 153–158. https://doi.org/10.4028/www.scientific.net/AMR.89-91.153
De las Cuevas, F., Ferraiuolo, A., Karjalainen, L.P., Gil Sevi- llano, J. (2014). Propiedades mecánicas a tracción de un acero TWIP a altas velocidades de deformación: relación de Hall-Petch. Rev. Metal. 50 (4), e031. https://doi.org/10.3989/revmetalm.031
Fick, A. (1855). Ueber Diffusion. Ann. Physik-Leipzig 170 (1), 59–86. https://doi.org/10.1002/andp.18551700105
Frommeyer, G., Grässel, O. (1998). Light Constructional Steel and the Use Thereof. Patent PCT/EP98/04044. WO 99/01585 A1.
Frommeyer, G., Drewes, E.J., Engl, B. (2000). Physical and mechanical properties of iron-aluminium-(Mn, Si) lightweight steels. Rev. Metall-Paris 97 (10), 1245–1253. https://doi.org/10.1051/metal:2000110
Galán, J., Samek, L., Verleysen, P., Verbeken, K., Houbaert, Y. (2012). Advanced high strength steels for automotive industry. Rev. Metal. 48 (2), 118–131. https://doi.org/10.3989/revmetalm.1158
Ghasri-Khouzani, M., McDermid, J.R. (2015). Effect of carbon content on the mechanical properties and microstructural evolution of Fe-22Mn-C steels. Mater. Sci. Eng. A 621, 118–127. https://doi.org/10.1016/j.msea.2014.10.042
Grässel, O., Frommeyer, G. (1998). Effect of martensitic phase transformation and deformation twinning on mechanical properties of Fe-Mn-Si-Al steels. Mater. Sci. Tech. 14 (12), 1213–1217. https://doi.org/10.1179/mst.1998.14.12.1213
Grässel, O., Frommeyer, G., Derder, D., Hofmann, H. (1997). Phase transformation and mechanical properties of Fe-Mn-Si-Al TRIP-steels. J. Phys. IV France 7, - C5.383-C5.388. https://doi.org/10.1051/jp4:1997560
Grässel, O., Krüger, L., Frommeyer, G., Meyer, L.W. (2000). High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development - properties - application. Int. J. Plasticity 16 (10–11), 1391–1409. https://doi.org/10.1016/S0749-6419(00)00015-2
Gil Sevillano, J., de las Cuevas, F. (2012). Internal stresses and the mechanism of work hardening in twinning-induced plasticity steels. Scripta Mater. 66 (12), 978–981. https://doi.org/10.1016/j.scriptamat.2012.02.019
Goldberg, A., Ruano, O.A., Sherby, O.D. (1992). Development of ultrafine microstructures and superplasticity in Hadfield manganese steels. Mater. Sci. Eng. A 150 (2), 187–194. https://doi.org/10.1016/0921-5093(92)90111-D
Hadfield, R.A. (1883). High manganese steel. British Patent Nº 200/1883.
Khalissi, M., Singh Raman, R.K., Khoddam, S. (2011). Stress Corrosion Cracking of Novel Steel for Automotive Applications. Procedia Eng. 10, 3381–3386. https://doi.org/10.1016/j.proeng.2011.04.557
Koyama, M., Sawaguchi, T., Tsuzaki, K. (2012a). Quasi-cleavage Fracture along Annealing Twin Boundaries in a Fe–Mn–C Austenitic Steel. ISIJ Int. 52 (1), 161–163. https://doi.org/10.2355/isijinternational.52.161
Koyama, M., Akiyama, E., Tsuzaki, K. (2012b). Hydrogen embrittlement in a Fe-Mn-C ternary twinning induced plasticity. Corros. Sci. 54, 1–4. https://doi.org/10.1016/j.corsci.2011.09.022
Lin, H.C., Lin, K.M., Lin, C.S., Ouyang, T.M. (2002). The corrosion behavior of Fe-based shape memory alloys. Corros. Sci. 44 (9), 2013–2026. https://doi.org/10.1016/S0010-938X(02)00027-6
Pierce, D.T., Jiménez, J.A., Bentley, J., Raabe, D., Oskay, C., Witting, J.E. (2014). The influence of manganese content on the stacking fault and austenite / e-martensite interfacial energies in Fe-Mn-(Al-Si) steels investigated by experiment and theory. Acta Mater. 68, 238–253. https://doi.org/10.1016/j.actamat.2014.01.001
Pierce, D.T., Jiménez, J.A., Bentley, J., Raabe, D., Oskay, C., Witting, J.E. (2015). The influence of stacking fault energy on the microstructural and strain hardening evolution of Fe–Mn–Al–Si steels during tensile deformation. Acta Mater. 100, 178–190. https://doi.org/10.1016/j.actamat.2015.08.030
Rong, Y.H., Meng, Q.P., He, G., Xu, Z.Y. (2003). Calculation of the Stacking Fault Energies of Fe-Mn Alloys by Embedded-Atom Method. Journal Shanghai Jiaotong University 37, 171–174. http://en.cnki.com.cn/Journal_en/C-C000-SHJT-2003-02.htm.
Saeed-Akbari, A., Imalau, J., Prahl, U., Bleck, W. (2009). Derivation and Variation in Composition-Dependent Stacking Fault Energy Maps Based on Subregular Solution Model in High-Manganese Steels. Metall. Mater. Trans. A 40 (13), 3076–3090. https://doi.org/10.1007/s11661-009-0050-8
Scott, C., Allain, S., Faral, M., Guelton, N. (2006). The development of a new Fe-Mn-C austenitic steel for automotive applications. Rev. Metall-Paris 103 (6), 293–302. https://doi.org/10.1051/metal:2006142
Sipos, K., Remy, L., Pineau, A. (1976). Influence of austenite predeformation on mechanical properties and strain-induced martensitic transformations of a high manganese steel. Metall. Trans. A. 7 (5), 857–864. https://doi.org/10.1007/BF02644083
Tomota, Y., Strum, M., Morris, J.W. (1987). The relationship between toughness and microstructure in Fe-high Mn binary alloys. Metall. Mater. Trans. A 18 (6), 1073–1081. https://doi.org/10.1007/BF02668556
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the printed and online versions of this Journal are the property of Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.All contents of this electronic edition, except where otherwise noted, are distributed under a “Creative Commons Attribution 4.0 International” (CC BY 4.0) License. You may read here the basic information and the legal text of the license. The indication of the CC BY 4.0 License must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the published by the Editor, is not allowed.