Small punch creep test in a 316 austenitic stainless steel

Authors

  • Maribel L. Saucedo-Muñoz Instituto Politécnico Nacional (ESIQIE)
  • Shi-Ichi Komazaki University of Kagoshima, Faculty of Engineering
  • Toshiyuki Hashida Tohoku University, School of Engineering
  • Víctor M. López-Hirata Instituto Politécnico Nacional (ESIQIE)

DOI:

https://doi.org/10.3989/revmetalm.034

Keywords:

316 Austenitic stainless steel, Creep behavior, Small punch creep test

Abstract


The small punch creep test was applied to evaluate the creep behavior of a 316 type austenitic stainless steel at temperatures of 650, 675 and 700 °C. The small punch test was carried out using a creep tester with a specimen size of 10×10×0.3 mm at 650, 675 and 700 °C using loads from 199 to 512 N. The small punch creep curves show the three stages found in the creep curves of the conventional uniaxial test. The conventional creep relationships which involve parameters such as creep rate, stress, time to rupture and temperature were followed with the corresponding parameters of small punch creep test and they permitted to explain the creep behavior in this steel. The mechanism and activation energy of the deformation process were the grain boundary sliding and diffusion, respectively, during creep which caused the intergranular fracture in the tested specimens.

Downloads

Download data is not yet available.

References

Chen, J., Wha Ma, Y., Bong Yoon, K. (2010). Finite element study for determination of material´s creep parameters from small punch test. J. Mech. Sci. Tech. 24 (6), 1195–1201. http://dx.doi.org/10.1007/s12206-010-0327-2

Cuesta, I.I., Alegre, J.M., Lacalle, R. (2010). Determination of the Gurson-Tvergaard damage model parameters for simulating small punch tests. Fatigue Fract. Eng. Mater. Struct. 33 (11), 703–713. http://dx.doi.org/10.1111/j.1460-2695.2010.01481.x

Dieter, G.E. (1988). Mechanical Metalurgy, Mc Graw-hill, New York.

Dobes, F., Milicka, K. (2009). Application of creep small punch testing in assessment of creep lifetime. J. Mater. Sci. Eng. A 510–511, 440–443. http://dx.doi.org/10.1016/j.msea.2008.04.087

Evans, M., Wang, D. (2008). The small punch creep test: some results from a numerical model. J. Mater. Sci. 43 (6), 1825–1835. http://dx.doi.org/10.1007/s10853-007-2388-x

Frost, H.J., Ashby, M.F. (1982). Deformation-mechanism Maps, Pergamon Press, Oxford.

Hou, F., Xu, H., Wang, Y., Zhang, L. (2013). Determination of creep property of 1.25Cr.25Mo pearlitic steels by small punch tests. Eng. Fail. Anal. 28, 215–221. http://dx.doi.org/10.1016/j.engfailanal.2012.10.004

Izaki, T., Kobayashi, T., Kumsumuto, J., Kanaya, A. (2009). A creep life assessment method for boiler pipes using small punch test. Int. J. Pres. Ves. Pip. 86 (9), 637–642. http://dx.doi.org/10.1016/j.ijpvp.2009.04.005

Komazaki, S., Hashida, T., Shoji, T., Suzuki, K. (2000). Development of small punch tests for creep property measurement of tungsten-alloyed 9% Cr ferritic steels. J. Therm. Anal. 28, 249–256.

Komazaki, S., Kato, T., Kohno, Y., Tanigawa, H. (2009). A study on influence factors of small punch creep test by experimental investigation and finite element analysis. Mater Sci. Eng. A 510–511, 229–233. http://dx.doi.org/10.1016/j.msea.2008.04.132

Marshal, P. (1984). Austenitic stainless Steels Microstructure and Properties, Elsevier, London. PMid:6709142

Mathew, M. D., Ganesh Kumar, J., Ganesan, V., Laha, K. (2014). Small punch creep studies for optimization of nitrogen content in 316LN SS for enhanced creep resistance. Met. Mater. Trans. A 45 (2), 731–737. http://dx.doi.org/10.1007/s11661-013-2027-x

NRIM (1978). Creep Data Sheet No. 6A, National Research Institute for Metals, Tokyo, Japan.

NRIM (2003). Metallographic Atlas of Long-term Crept Materials No. M-2, National Research Institute for Metals, Tokyo, Japan.

Parker, J.D., James, J.D. (1994). Creep behaviour of miniature disc specimens of low alloy steel, development in a progressing technology. ASME 279, 167–172.

Rieth, M., Falkenstein, A., Graf, P., Heger, S., Jäntsch, U., Klimiankou, M., Materna-Morris, E., Zimmermann, H. (2004). Creep of The Austenitic Steel 316 L(N) – Experiments and Models-, Forschungszentrum Karlsruhe GmbH, Karlsruhe, Germany.

Saucedo-Mu-oz, M.L., Komazaki, S., Takahashi, T., Shoji, T. (2002). Creep property measurement of service-exposed SUS 316 austenitic stainless steel by the small punch creeptesting technique. J. Mater. Res. 17 (8), 1945–1953. http://dx.doi.org/10.1557/JMR.2002.0288

Saucedo-Mu-oz, M.L., Komazaki, S., Hashida, T., Shoji, T., Lopez-Hirata, V.M. (2003). Aplicación del ensayo miniatura de embutido para la evaluación de la tenacidad a temperaturas Criogénicas de Aceros Inoxidables Austeníticos Envejecidos Isotérmicamente. Rev. Metal. 39, 378–386. http://dx.doi.org/10.3989/revmetalm.2003.v39.i5.350

Viswanathan, R. (1989). Damage Mechanism and Life Assessment of High- Temperature Components. ASM International, Metals Park, Ohio. PMCid:PMC2991675

Published

2015-03-30

How to Cite

Saucedo-Muñoz, M. L., Komazaki, S.-I., Hashida, T., & López-Hirata, V. M. (2015). Small punch creep test in a 316 austenitic stainless steel. Revista De Metalurgia, 51(1), e034. https://doi.org/10.3989/revmetalm.034

Issue

Section

Articles

Most read articles by the same author(s)