Small punch creep test in a 316 austenitic stainless steel
DOI:
https://doi.org/10.3989/revmetalm.034Keywords:
316 Austenitic stainless steel, Creep behavior, Small punch creep testAbstract
The small punch creep test was applied to evaluate the creep behavior of a 316 type austenitic stainless steel at temperatures of 650, 675 and 700 °C. The small punch test was carried out using a creep tester with a specimen size of 10×10×0.3 mm at 650, 675 and 700 °C using loads from 199 to 512 N. The small punch creep curves show the three stages found in the creep curves of the conventional uniaxial test. The conventional creep relationships which involve parameters such as creep rate, stress, time to rupture and temperature were followed with the corresponding parameters of small punch creep test and they permitted to explain the creep behavior in this steel. The mechanism and activation energy of the deformation process were the grain boundary sliding and diffusion, respectively, during creep which caused the intergranular fracture in the tested specimens.
Downloads
References
Chen, J., Wha Ma, Y., Bong Yoon, K. (2010). Finite element study for determination of material´s creep parameters from small punch test. J. Mech. Sci. Tech. 24 (6), 1195–1201. http://dx.doi.org/10.1007/s12206-010-0327-2
Cuesta, I.I., Alegre, J.M., Lacalle, R. (2010). Determination of the Gurson-Tvergaard damage model parameters for simulating small punch tests. Fatigue Fract. Eng. Mater. Struct. 33 (11), 703–713. http://dx.doi.org/10.1111/j.1460-2695.2010.01481.x
Dieter, G.E. (1988). Mechanical Metalurgy, Mc Graw-hill, New York.
Dobes, F., Milicka, K. (2009). Application of creep small punch testing in assessment of creep lifetime. J. Mater. Sci. Eng. A 510–511, 440–443. http://dx.doi.org/10.1016/j.msea.2008.04.087
Evans, M., Wang, D. (2008). The small punch creep test: some results from a numerical model. J. Mater. Sci. 43 (6), 1825–1835. http://dx.doi.org/10.1007/s10853-007-2388-x
Frost, H.J., Ashby, M.F. (1982). Deformation-mechanism Maps, Pergamon Press, Oxford.
Hou, F., Xu, H., Wang, Y., Zhang, L. (2013). Determination of creep property of 1.25Cr.25Mo pearlitic steels by small punch tests. Eng. Fail. Anal. 28, 215–221. http://dx.doi.org/10.1016/j.engfailanal.2012.10.004
Izaki, T., Kobayashi, T., Kumsumuto, J., Kanaya, A. (2009). A creep life assessment method for boiler pipes using small punch test. Int. J. Pres. Ves. Pip. 86 (9), 637–642. http://dx.doi.org/10.1016/j.ijpvp.2009.04.005
Komazaki, S., Hashida, T., Shoji, T., Suzuki, K. (2000). Development of small punch tests for creep property measurement of tungsten-alloyed 9% Cr ferritic steels. J. Therm. Anal. 28, 249–256.
Komazaki, S., Kato, T., Kohno, Y., Tanigawa, H. (2009). A study on influence factors of small punch creep test by experimental investigation and finite element analysis. Mater Sci. Eng. A 510–511, 229–233. http://dx.doi.org/10.1016/j.msea.2008.04.132
Marshal, P. (1984). Austenitic stainless Steels Microstructure and Properties, Elsevier, London. PMid:6709142
Mathew, M. D., Ganesh Kumar, J., Ganesan, V., Laha, K. (2014). Small punch creep studies for optimization of nitrogen content in 316LN SS for enhanced creep resistance. Met. Mater. Trans. A 45 (2), 731–737. http://dx.doi.org/10.1007/s11661-013-2027-x
NRIM (1978). Creep Data Sheet No. 6A, National Research Institute for Metals, Tokyo, Japan.
NRIM (2003). Metallographic Atlas of Long-term Crept Materials No. M-2, National Research Institute for Metals, Tokyo, Japan.
Parker, J.D., James, J.D. (1994). Creep behaviour of miniature disc specimens of low alloy steel, development in a progressing technology. ASME 279, 167–172.
Rieth, M., Falkenstein, A., Graf, P., Heger, S., Jäntsch, U., Klimiankou, M., Materna-Morris, E., Zimmermann, H. (2004). Creep of The Austenitic Steel 316 L(N) – Experiments and Models-, Forschungszentrum Karlsruhe GmbH, Karlsruhe, Germany.
Saucedo-Mu-oz, M.L., Komazaki, S., Takahashi, T., Shoji, T. (2002). Creep property measurement of service-exposed SUS 316 austenitic stainless steel by the small punch creeptesting technique. J. Mater. Res. 17 (8), 1945–1953. http://dx.doi.org/10.1557/JMR.2002.0288
Saucedo-Mu-oz, M.L., Komazaki, S., Hashida, T., Shoji, T., Lopez-Hirata, V.M. (2003). Aplicación del ensayo miniatura de embutido para la evaluación de la tenacidad a temperaturas Criogénicas de Aceros Inoxidables Austeníticos Envejecidos Isotérmicamente. Rev. Metal. 39, 378–386. http://dx.doi.org/10.3989/revmetalm.2003.v39.i5.350
Viswanathan, R. (1989). Damage Mechanism and Life Assessment of High- Temperature Components. ASM International, Metals Park, Ohio. PMCid:PMC2991675
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the printed and online versions of this Journal are the property of Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a “Creative Commons Attribution 4.0 International” (CC BY 4.0) License. You may read the basic information and the legal text of the license. The indication of the CC BY 4.0 License must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the published by the Editor, is not allowed.