Cell adhesion on Ti surface with controlled roughness
DOI:
https://doi.org/10.3989/revmetalm.044Keywords:
Electrochemical impedance spectroscopy, Quartz crystal microbalance, Saos-2 osteoblasts, TitaniumAbstract
In this report, the in situ interaction between Saos-2 osteoblast cells and a smooth Ti surface was examined over time. The adhesion kinetics and mechanisms of cellular proliferation were monitored by quartz crystal microbalance (QCM) and electrochemical impedance spectroscopy (EIS). The rate of Saos-2 attachment on Ti surfaces, obtained from the measurements performed with the QCM, is a first-order reaction, with k=2.10−3 min−1. The impedance measurements indicate that in the absence of cells, the Ti resistance diminishes over time (7 days), due to the presence of amino acids and proteins from the culture medium that have been a dsorbed, while in the presence of osteoblasts, this decrease is much greater because of the compounds generated by the cells that accelerate the dissolution of Ti.
Downloads
References
Alberts, B., Bray D., Lewis, J., Raff, M., Roberts, K., Watson, J.D. (1989). Molecular Biology of the Cell, 2nd Ed. Garland, New York.
Alonso, C., García-Alonso, M.C., Escudero, M.L. (2008). Electrolytic cell used for electrochemical analysis of metallic implant and cell culture interface. Patent n° 200801041, Espa-a.
Burgos-Asperilla, L., García-Alonso, M.C., Escudero, M.L., Alonso, C. (2010). Study of the interaction of inorganic and organic compounds of cell culture medium with a Ti surface. Acta Biomater. 6 (2), 652–661. http://dx.doi.org/10.1016/j.actbio.2009.06.019 PMid:19539064
Burgos-Asperilla, L., Gamero, M., Escudero, M.L., Alonso, C., García-Alonso, M.C. (2014). Interacción de compuestos inorgánicos y orgánicos de fluidos fisiológicos con superficies de Ti tratadas térmicamente. Rev. Metal. 50 (3), e022.
Bruneel, N., Helsen, J.A. (1988). In vitro simulation of biocompatibility of Ti-Al-V. J. Biomed. Mater. Res. 22 (3), 203–214. http://dx.doi.org/10.1002/jbm.820220305 PMid:3129434
Chen, Y.J., Feng, B., Zhu, Y.P., Weng, J., Wang, J.X., Lu, X. (2009). Fabrication of porous titanium implants with biomechanical compatibility. Mater. Lett. 63 (30), 2659–2661. http://dx.doi.org/10.1016/j.matlet.2009.09.029
Clark, G.C., Williams, D.F. (1982). The effects of proteins on metallic corrosion. J. Biomed. Mater. Res. 16 (2), 125–134. http://dx.doi.org/10.1002/jbm.820160205 PMid:7061531
Echevarría, A., Arroyave, C. (2003). Evaluación electroquímica de algunas aleaciones para implantes dentales del tipo titanio y acero inoxidable. Rev. Metal. 39, 174–181. http://dx.doi.org/10.3989/revmetalm.2003.v39.iExtra.1116
Galli Marxer, C., Collaud Coen, M., Greber, T., Greber, U.F., Schlapbach, L. (2003). Cell spreading on quartz crystal microbalance elicits positive frequency shifts indicative of viscosity changes. Anal. Bioanal. Chem. 377 (3), 578–586. http://dx.doi.org/10.1007/s00216-003-2080-1 PMid:12879196
García-Alonso, M.C., Salda-a, L., Alonso, C., Barranco, V., Mu-oz-Morris, M.A., Escudero, M.L. (2009). In situ cell culture monitoring on a Ti-6Al-4V surface by electrochemical techniques. Acta Biomater. 5 (4), 1374–1384. http://dx.doi.org/10.1016/j.actbio.2008.11.020 PMid:19119085
Goreham, R.V., Mierczynska, A., Smith, L.E., Sedev, R., Vasilevet, K. (2013). Small surface nanotopography encourages fibroblast and osteoblast cell adhesion. RSC Adv. 3 (26), 10309–10317. http://dx.doi.org/10.1039/c3ra23193c
Healy, K.E., Ducheyne, P. (1992). Hydration and preferential molecular adsorption on titanium in vitro. Biomaterials 13 (8), 553–561. http://dx.doi.org/10.1016/0142-9612(92)90108-Z
Hiromoto, S., Noda, K., Hanawa, T. (2002). Electrochemical properties of an interface between titanium and fibroblasts L929. Electrochim. Acta 48 (4), 387–396. http://dx.doi.org/10.1016/S0013-4686(02)00684-9
Huang, H.H. (2004). In situ surface electrochemical characterizations of Ti and Ti-6Al-4V alloy cultured with osteoblast-like cells. Biochem. Biophys. Res. Commun. 314 (3), 787–792. http://dx.doi.org/10.1016/j.bbrc.2003.12.173
Jones, D.B. (1998). Cells and Metals in Metals as biomaterials, Ed. John Wiley and Sons, Chichester, England.
Kanazawa, K.K., Gordon, J.G. (1985). The oscillation frequency of a quartz resonator in contact with a liquid. Anal. Chim. Acta 175, 99–105. http://dx.doi.org/10.1016/S0003-2670(00)82721-X
Khung, Y.L., Barritt, G., Voelcker, N.H. (2008). Using continuous porous silicon gradients to study the influence of surface topography on the behaviour of neuroblastoma cells. Exp. Cell Res. 314 (4), 789–800. http://dx.doi.org/10.1016/j.yexcr.2007.10.015 PMid:18054914
Lacour, F., De Ficquelmont-Loizos, M.M., Caprani, A. (1991). Effect of the ionic strength of the supporting electrolyte on the kinetics of albumin adsorption at a glassy carbon rotating disk electrode. Electrochim. Acta 36 (11–12), 1811–1816. http://dx.doi.org/10.1016/0013-4686(91)85049-D
Lima, J., Sous, S.R., Ferreira, A., Barbosa, M.A. (2001). Interactions between calcium, phosphate and albumin on the surface of titanium. J. Biomed. Mater. Res. 55 (1), 45–53. http://dx.doi.org/10.1002/1097-4636(200104)55:1<45::AID-JBM70>3.0.CO;2-0
Malik, M.A., Puleo, D.A., Bizios, R., Doremus, R.H. (1992). Osteoblasts on hydroxyapatite, alumina and bone surfaces in vitro: morphology during the first 2 h of attachment. Biomaterials 13 (2), 123–128. http://dx.doi.org/10.1016/0142-9612(92)90008-C
Marx Kenneth, A., Zhou, T., Warren, M., Susan Braunhut, J. (2003). Quartz crystal microbalance study of endothelial cell number dependent differences in initial adhesion and steady-state behavior: evidence for cell-cell cooperativity in initial adhesion and spreading. Biotechnol. Progr. 19 (3), 987–999. http://dx.doi.org/10.1021/bp0201096 PMid:12790666
Mendonça, G., Mendonça, D.B.S., Simões, L.G.P., Araújo, A.L., Leite, E.R., Duarte, W.R., Aragão, F.J.L., Cooper, L.F. (2009). The effects of implant surface nanoscale features on osteoblast-specific gene expression. Biomaterials 30 (25), 4053–4062. http://dx.doi.org/10.1016/j.biomaterials.2009.04.010 PMid:19464052
Messer, D.K.R., Austin, G., Venugopalan, R. (2001). In vitro test system combining cell culture and corrosion techniques. Proc. Society for Biomaterials 27th Annual Meeting Transactions, Saint Paul, Minnesota, p. 221.
Modin, C., Stranne, A.L, Foss, M., Duch, M., Justesen, J., Chevallier, J. (2006). QCM-D studies of attachment and differential spreading of pre-osteoblastic cells on Ta and Cr surfaces. Biomaterials 27 (8), 1346–1354. http://dx.doi.org/10.1016/j.biomaterials.2005.09.022 PMid:16236355
Mustafa, K., Pan, J., Wroblewski, J., Leygraf, C., Arvidson, K. (2002). Electrochemical impedance spectroscopy and X-ray photoelectron spectroscopy analysis of titanium surfaces cultured with osteoblast-like cells derived from human mandibular bone. J. Biomed. Mater. Res. 59 (4), 655–664. http://dx.doi.org/10.1002/jbm.1275 PMid:11774327
Redepenning, J., Schlesinger, T.K., Mechalke, E.J., Puleo, D.A., Bizios, R. (1993). Osteoblast attachment monitored with a quartz crystal microbalance. Anal. Chem. 65 (23), 3378–3381. http://dx.doi.org/10.1021/ac00071a008
Webster, T.J., Ergun, C., Doremus, R.H., Siegel, R.W., Bizios, R. (2000). Enhanced functions of osteoblasts on nanophase ceramics. Biomaterials 21 (17), 1803–1810. http://dx.doi.org/10.1016/S0142-9612(00)00075-2
Yang, B., Uchida, M., Kim, H.M, Zhang, X., Kokub, T. (2004). Preparation of bioactive titanium metal via anodic oxidation treatment. Biomaterials 25 (6), 1003–1010. http://dx.doi.org/10.1016/S0142-9612(03)00626-4
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the printed and online versions of this Journal are the property of Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a “Creative Commons Attribution 4.0 International” (CC BY 4.0) License. You may read the basic information and the legal text of the license. The indication of the CC BY 4.0 License must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the published by the Editor, is not allowed.