Adhesión de osteoblastos sobre una superficie de Ti de rugosidad controlada

Autores/as

  • Laura Burgos-Asperilla Department of Applied Physical Chemistry, Universidad Autónoma de Madrid
  • M. Cristina García-Alonso Department of Applied Physical Chemistry, Universidad Autónoma de Madrid - Department of Surface Engineering, Corrosion and Durability, National Centre for Metallurgical Research (CENIM-CSIC)
  • M. Lorenza Escudero Department of Applied Physical Chemistry, Universidad Autónoma de Madrid - Department of Surface Engineering, Corrosion and Durability, National Centre for Metallurgical Research (CENIM-CSIC)
  • Concepción Alonso Department of Applied Physical Chemistry, Universidad Autónoma de Madrid

DOI:

https://doi.org/10.3989/revmetalm.044

Palabras clave:

Espectroscopia de impedancia electroquímica, Microbalanza de cristal de cuarzo, Osteoblastos Saos-2, Titanio

Resumen


En este trabajo, se ha estudiado la interacción in situ entre células osteoblásticas Saos-2 y una superficie de Ti de rugosidad controlada a lo largo del tiempo. El estudio de la cinética y los mecanismos de proliferación celular de adhesión se ha realizado a través de la microbalanza de cristal de cuarzo (QCM) y espectroscopía de impedancia electroquímica (EIS). La velocidad de adhesión de los osteoblastos sobre la superficie de Ti obtenida a través de medidas con la QCM, sigue una reacción de primer orden, con k=2×10−3 min−1. Los ensayos de impedancia indican que, en ausencia de las células, la resistencia del Ti disminuye con el tiempo (7 días), debido a la presencia de aminoácidos y proteínas del medio de cultivo que se han adsorbido, mientras que en presencia de células, esta disminución es mucho mayor debido a los productos metabólicos generados por las células que aceleran la disolución del Ti.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Alberts, B., Bray D., Lewis, J., Raff, M., Roberts, K., Watson, J.D. (1989). Molecular Biology of the Cell, 2nd Ed. Garland, New York.

Alonso, C., García-Alonso, M.C., Escudero, M.L. (2008). Electrolytic cell used for electrochemical analysis of metallic implant and cell culture interface. Patent n° 200801041, Espa-a.

Burgos-Asperilla, L., García-Alonso, M.C., Escudero, M.L., Alonso, C. (2010). Study of the interaction of inorganic and organic compounds of cell culture medium with a Ti surface. Acta Biomater. 6 (2), 652–661. http://dx.doi.org/10.1016/j.actbio.2009.06.019 PMid:19539064

Burgos-Asperilla, L., Gamero, M., Escudero, M.L., Alonso, C., García-Alonso, M.C. (2014). Interacción de compuestos inorgánicos y orgánicos de fluidos fisiológicos con superficies de Ti tratadas térmicamente. Rev. Metal. 50 (3), e022.

Bruneel, N., Helsen, J.A. (1988). In vitro simulation of biocompatibility of Ti-Al-V. J. Biomed. Mater. Res. 22 (3), 203–214. http://dx.doi.org/10.1002/jbm.820220305 PMid:3129434

Chen, Y.J., Feng, B., Zhu, Y.P., Weng, J., Wang, J.X., Lu, X. (2009). Fabrication of porous titanium implants with biomechanical compatibility. Mater. Lett. 63 (30), 2659–2661. http://dx.doi.org/10.1016/j.matlet.2009.09.029

Clark, G.C., Williams, D.F. (1982). The effects of proteins on metallic corrosion. J. Biomed. Mater. Res. 16 (2), 125–134. http://dx.doi.org/10.1002/jbm.820160205 PMid:7061531

Echevarría, A., Arroyave, C. (2003). Evaluación electroquímica de algunas aleaciones para implantes dentales del tipo titanio y acero inoxidable. Rev. Metal. 39, 174–181. http://dx.doi.org/10.3989/revmetalm.2003.v39.iExtra.1116

Galli Marxer, C., Collaud Coen, M., Greber, T., Greber, U.F., Schlapbach, L. (2003). Cell spreading on quartz crystal microbalance elicits positive frequency shifts indicative of viscosity changes. Anal. Bioanal. Chem. 377 (3), 578–586. http://dx.doi.org/10.1007/s00216-003-2080-1 PMid:12879196

García-Alonso, M.C., Salda-a, L., Alonso, C., Barranco, V., Mu-oz-Morris, M.A., Escudero, M.L. (2009). In situ cell culture monitoring on a Ti-6Al-4V surface by electrochemical techniques. Acta Biomater. 5 (4), 1374–1384. http://dx.doi.org/10.1016/j.actbio.2008.11.020 PMid:19119085

Goreham, R.V., Mierczynska, A., Smith, L.E., Sedev, R., Vasilevet, K. (2013). Small surface nanotopography encourages fibroblast and osteoblast cell adhesion. RSC Adv. 3 (26), 10309–10317. http://dx.doi.org/10.1039/c3ra23193c

Healy, K.E., Ducheyne, P. (1992). Hydration and preferential molecular adsorption on titanium in vitro. Biomaterials 13 (8), 553–561. http://dx.doi.org/10.1016/0142-9612(92)90108-Z

Hiromoto, S., Noda, K., Hanawa, T. (2002). Electrochemical properties of an interface between titanium and fibroblasts L929. Electrochim. Acta 48 (4), 387–396. http://dx.doi.org/10.1016/S0013-4686(02)00684-9

Huang, H.H. (2004). In situ surface electrochemical characterizations of Ti and Ti-6Al-4V alloy cultured with osteoblast-like cells. Biochem. Biophys. Res. Commun. 314 (3), 787–792. http://dx.doi.org/10.1016/j.bbrc.2003.12.173

Jones, D.B. (1998). Cells and Metals in Metals as biomaterials, Ed. John Wiley and Sons, Chichester, England.

Kanazawa, K.K., Gordon, J.G. (1985). The oscillation frequency of a quartz resonator in contact with a liquid. Anal. Chim. Acta 175, 99–105. http://dx.doi.org/10.1016/S0003-2670(00)82721-X

Khung, Y.L., Barritt, G., Voelcker, N.H. (2008). Using continuous porous silicon gradients to study the influence of surface topography on the behaviour of neuroblastoma cells. Exp. Cell Res. 314 (4), 789–800. http://dx.doi.org/10.1016/j.yexcr.2007.10.015 PMid:18054914

Lacour, F., De Ficquelmont-Loizos, M.M., Caprani, A. (1991). Effect of the ionic strength of the supporting electrolyte on the kinetics of albumin adsorption at a glassy carbon rotating disk electrode. Electrochim. Acta 36 (11–12), 1811–1816. http://dx.doi.org/10.1016/0013-4686(91)85049-D

Lima, J., Sous, S.R., Ferreira, A., Barbosa, M.A. (2001). Interactions between calcium, phosphate and albumin on the surface of titanium. J. Biomed. Mater. Res. 55 (1), 45–53. http://dx.doi.org/10.1002/1097-4636(200104)55:1<45::AID-JBM70>3.0.CO;2-0

Malik, M.A., Puleo, D.A., Bizios, R., Doremus, R.H. (1992). Osteoblasts on hydroxyapatite, alumina and bone surfaces in vitro: morphology during the first 2 h of attachment. Biomaterials 13 (2), 123–128. http://dx.doi.org/10.1016/0142-9612(92)90008-C

Marx Kenneth, A., Zhou, T., Warren, M., Susan Braunhut, J. (2003). Quartz crystal microbalance study of endothelial cell number dependent differences in initial adhesion and steady-state behavior: evidence for cell-cell cooperativity in initial adhesion and spreading. Biotechnol. Progr. 19 (3), 987–999. http://dx.doi.org/10.1021/bp0201096 PMid:12790666

Mendonça, G., Mendonça, D.B.S., Simões, L.G.P., Araújo, A.L., Leite, E.R., Duarte, W.R., Aragão, F.J.L., Cooper, L.F. (2009). The effects of implant surface nanoscale features on osteoblast-specific gene expression. Biomaterials 30 (25), 4053–4062. http://dx.doi.org/10.1016/j.biomaterials.2009.04.010 PMid:19464052

Messer, D.K.R., Austin, G., Venugopalan, R. (2001). In vitro test system combining cell culture and corrosion techniques. Proc. Society for Biomaterials 27th Annual Meeting Transactions, Saint Paul, Minnesota, p. 221.

Modin, C., Stranne, A.L, Foss, M., Duch, M., Justesen, J., Chevallier, J. (2006). QCM-D studies of attachment and differential spreading of pre-osteoblastic cells on Ta and Cr surfaces. Biomaterials 27 (8), 1346–1354. http://dx.doi.org/10.1016/j.biomaterials.2005.09.022 PMid:16236355

Mustafa, K., Pan, J., Wroblewski, J., Leygraf, C., Arvidson, K. (2002). Electrochemical impedance spectroscopy and X-ray photoelectron spectroscopy analysis of titanium surfaces cultured with osteoblast-like cells derived from human mandibular bone. J. Biomed. Mater. Res. 59 (4), 655–664. http://dx.doi.org/10.1002/jbm.1275 PMid:11774327

Redepenning, J., Schlesinger, T.K., Mechalke, E.J., Puleo, D.A., Bizios, R. (1993). Osteoblast attachment monitored with a quartz crystal microbalance. Anal. Chem. 65 (23), 3378–3381. http://dx.doi.org/10.1021/ac00071a008

Webster, T.J., Ergun, C., Doremus, R.H., Siegel, R.W., Bizios, R. (2000). Enhanced functions of osteoblasts on nanophase ceramics. Biomaterials 21 (17), 1803–1810. http://dx.doi.org/10.1016/S0142-9612(00)00075-2

Yang, B., Uchida, M., Kim, H.M, Zhang, X., Kokub, T. (2004). Preparation of bioactive titanium metal via anodic oxidation treatment. Biomaterials 25 (6), 1003–1010. http://dx.doi.org/10.1016/S0142-9612(03)00626-4

Publicado

2015-06-30

Cómo citar

Burgos-Asperilla, L., García-Alonso, M. C., Escudero, M. L., & Alonso, C. (2015). Adhesión de osteoblastos sobre una superficie de Ti de rugosidad controlada. Revista De Metalurgia, 51(2), e044. https://doi.org/10.3989/revmetalm.044

Número

Sección

Artículos

Artículos más leídos del mismo autor/a