Adhesión de osteoblastos sobre una superficie de Ti de rugosidad controlada
DOI:
https://doi.org/10.3989/revmetalm.044Palabras clave:
Espectroscopia de impedancia electroquímica, Microbalanza de cristal de cuarzo, Osteoblastos Saos-2, TitanioResumen
En este trabajo, se ha estudiado la interacción in situ entre células osteoblásticas Saos-2 y una superficie de Ti de rugosidad controlada a lo largo del tiempo. El estudio de la cinética y los mecanismos de proliferación celular de adhesión se ha realizado a través de la microbalanza de cristal de cuarzo (QCM) y espectroscopía de impedancia electroquímica (EIS). La velocidad de adhesión de los osteoblastos sobre la superficie de Ti obtenida a través de medidas con la QCM, sigue una reacción de primer orden, con k=2×10−3 min−1. Los ensayos de impedancia indican que, en ausencia de las células, la resistencia del Ti disminuye con el tiempo (7 días), debido a la presencia de aminoácidos y proteínas del medio de cultivo que se han adsorbido, mientras que en presencia de células, esta disminución es mucho mayor debido a los productos metabólicos generados por las células que aceleran la disolución del Ti.
Descargas
Citas
Alberts, B., Bray D., Lewis, J., Raff, M., Roberts, K., Watson, J.D. (1989). Molecular Biology of the Cell, 2nd Ed. Garland, New York.
Alonso, C., García-Alonso, M.C., Escudero, M.L. (2008). Electrolytic cell used for electrochemical analysis of metallic implant and cell culture interface. Patent n° 200801041, Espa-a.
Burgos-Asperilla, L., García-Alonso, M.C., Escudero, M.L., Alonso, C. (2010). Study of the interaction of inorganic and organic compounds of cell culture medium with a Ti surface. Acta Biomater. 6 (2), 652–661. http://dx.doi.org/10.1016/j.actbio.2009.06.019 PMid:19539064
Burgos-Asperilla, L., Gamero, M., Escudero, M.L., Alonso, C., García-Alonso, M.C. (2014). Interacción de compuestos inorgánicos y orgánicos de fluidos fisiológicos con superficies de Ti tratadas térmicamente. Rev. Metal. 50 (3), e022.
Bruneel, N., Helsen, J.A. (1988). In vitro simulation of biocompatibility of Ti-Al-V. J. Biomed. Mater. Res. 22 (3), 203–214. http://dx.doi.org/10.1002/jbm.820220305 PMid:3129434
Chen, Y.J., Feng, B., Zhu, Y.P., Weng, J., Wang, J.X., Lu, X. (2009). Fabrication of porous titanium implants with biomechanical compatibility. Mater. Lett. 63 (30), 2659–2661. http://dx.doi.org/10.1016/j.matlet.2009.09.029
Clark, G.C., Williams, D.F. (1982). The effects of proteins on metallic corrosion. J. Biomed. Mater. Res. 16 (2), 125–134. http://dx.doi.org/10.1002/jbm.820160205 PMid:7061531
Echevarría, A., Arroyave, C. (2003). Evaluación electroquímica de algunas aleaciones para implantes dentales del tipo titanio y acero inoxidable. Rev. Metal. 39, 174–181. http://dx.doi.org/10.3989/revmetalm.2003.v39.iExtra.1116
Galli Marxer, C., Collaud Coen, M., Greber, T., Greber, U.F., Schlapbach, L. (2003). Cell spreading on quartz crystal microbalance elicits positive frequency shifts indicative of viscosity changes. Anal. Bioanal. Chem. 377 (3), 578–586. http://dx.doi.org/10.1007/s00216-003-2080-1 PMid:12879196
García-Alonso, M.C., Salda-a, L., Alonso, C., Barranco, V., Mu-oz-Morris, M.A., Escudero, M.L. (2009). In situ cell culture monitoring on a Ti-6Al-4V surface by electrochemical techniques. Acta Biomater. 5 (4), 1374–1384. http://dx.doi.org/10.1016/j.actbio.2008.11.020 PMid:19119085
Goreham, R.V., Mierczynska, A., Smith, L.E., Sedev, R., Vasilevet, K. (2013). Small surface nanotopography encourages fibroblast and osteoblast cell adhesion. RSC Adv. 3 (26), 10309–10317. http://dx.doi.org/10.1039/c3ra23193c
Healy, K.E., Ducheyne, P. (1992). Hydration and preferential molecular adsorption on titanium in vitro. Biomaterials 13 (8), 553–561. http://dx.doi.org/10.1016/0142-9612(92)90108-Z
Hiromoto, S., Noda, K., Hanawa, T. (2002). Electrochemical properties of an interface between titanium and fibroblasts L929. Electrochim. Acta 48 (4), 387–396. http://dx.doi.org/10.1016/S0013-4686(02)00684-9
Huang, H.H. (2004). In situ surface electrochemical characterizations of Ti and Ti-6Al-4V alloy cultured with osteoblast-like cells. Biochem. Biophys. Res. Commun. 314 (3), 787–792. http://dx.doi.org/10.1016/j.bbrc.2003.12.173
Jones, D.B. (1998). Cells and Metals in Metals as biomaterials, Ed. John Wiley and Sons, Chichester, England.
Kanazawa, K.K., Gordon, J.G. (1985). The oscillation frequency of a quartz resonator in contact with a liquid. Anal. Chim. Acta 175, 99–105. http://dx.doi.org/10.1016/S0003-2670(00)82721-X
Khung, Y.L., Barritt, G., Voelcker, N.H. (2008). Using continuous porous silicon gradients to study the influence of surface topography on the behaviour of neuroblastoma cells. Exp. Cell Res. 314 (4), 789–800. http://dx.doi.org/10.1016/j.yexcr.2007.10.015 PMid:18054914
Lacour, F., De Ficquelmont-Loizos, M.M., Caprani, A. (1991). Effect of the ionic strength of the supporting electrolyte on the kinetics of albumin adsorption at a glassy carbon rotating disk electrode. Electrochim. Acta 36 (11–12), 1811–1816. http://dx.doi.org/10.1016/0013-4686(91)85049-D
Lima, J., Sous, S.R., Ferreira, A., Barbosa, M.A. (2001). Interactions between calcium, phosphate and albumin on the surface of titanium. J. Biomed. Mater. Res. 55 (1), 45–53. http://dx.doi.org/10.1002/1097-4636(200104)55:1<45::AID-JBM70>3.0.CO;2-0
Malik, M.A., Puleo, D.A., Bizios, R., Doremus, R.H. (1992). Osteoblasts on hydroxyapatite, alumina and bone surfaces in vitro: morphology during the first 2 h of attachment. Biomaterials 13 (2), 123–128. http://dx.doi.org/10.1016/0142-9612(92)90008-C
Marx Kenneth, A., Zhou, T., Warren, M., Susan Braunhut, J. (2003). Quartz crystal microbalance study of endothelial cell number dependent differences in initial adhesion and steady-state behavior: evidence for cell-cell cooperativity in initial adhesion and spreading. Biotechnol. Progr. 19 (3), 987–999. http://dx.doi.org/10.1021/bp0201096 PMid:12790666
Mendonça, G., Mendonça, D.B.S., Simões, L.G.P., Araújo, A.L., Leite, E.R., Duarte, W.R., Aragão, F.J.L., Cooper, L.F. (2009). The effects of implant surface nanoscale features on osteoblast-specific gene expression. Biomaterials 30 (25), 4053–4062. http://dx.doi.org/10.1016/j.biomaterials.2009.04.010 PMid:19464052
Messer, D.K.R., Austin, G., Venugopalan, R. (2001). In vitro test system combining cell culture and corrosion techniques. Proc. Society for Biomaterials 27th Annual Meeting Transactions, Saint Paul, Minnesota, p. 221.
Modin, C., Stranne, A.L, Foss, M., Duch, M., Justesen, J., Chevallier, J. (2006). QCM-D studies of attachment and differential spreading of pre-osteoblastic cells on Ta and Cr surfaces. Biomaterials 27 (8), 1346–1354. http://dx.doi.org/10.1016/j.biomaterials.2005.09.022 PMid:16236355
Mustafa, K., Pan, J., Wroblewski, J., Leygraf, C., Arvidson, K. (2002). Electrochemical impedance spectroscopy and X-ray photoelectron spectroscopy analysis of titanium surfaces cultured with osteoblast-like cells derived from human mandibular bone. J. Biomed. Mater. Res. 59 (4), 655–664. http://dx.doi.org/10.1002/jbm.1275 PMid:11774327
Redepenning, J., Schlesinger, T.K., Mechalke, E.J., Puleo, D.A., Bizios, R. (1993). Osteoblast attachment monitored with a quartz crystal microbalance. Anal. Chem. 65 (23), 3378–3381. http://dx.doi.org/10.1021/ac00071a008
Webster, T.J., Ergun, C., Doremus, R.H., Siegel, R.W., Bizios, R. (2000). Enhanced functions of osteoblasts on nanophase ceramics. Biomaterials 21 (17), 1803–1810. http://dx.doi.org/10.1016/S0142-9612(00)00075-2
Yang, B., Uchida, M., Kim, H.M, Zhang, X., Kokub, T. (2004). Preparation of bioactive titanium metal via anodic oxidation treatment. Biomaterials 25 (6), 1003–1010. http://dx.doi.org/10.1016/S0142-9612(03)00626-4
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2015 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.
Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Consulte la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.