The removal of toxic metals from liquid effluents by ion exchange resins. Part V: Nickel(II)/H+/Dowex C400

Authors

DOI:

https://doi.org/10.3989/revmetalm.105

Keywords:

Dowex C400, Liquid effluents, Multiwalled carbon nanotubes, Nickel(II), Removal

Abstract


The cationic exchange resin Dowex C400 was used to remove nickel(II) from aqueous solutions of different pH values and under various experimental conditions: stirring speed of the aqueous solution/resin system, temperature, resin dosage and aqueous ionic strength. The selectivity of the resin was investigated against the presence of various metals in the aqueous solution, and the removal of nickel(II) from aqueous solutions was also compared with results obtained using multiwalled carbon nanotubes or functionalized (carboxylic groups) multiwalled carbon nanotubes as adsorbents. According to batch experimental data, best fit of the results is obtained with the Freundlich model, whereas the ion exchange process is best explained by the pseudo-first order model. Experimental data fit well to the moving boundary controlled model. Elution of the nickel(II) loaded onto Dowex C400 resin is fully possible using acidic solutions.

Downloads

Download data is not yet available.

References

Alguacil, F.J. (2002). The removal of toxic metals from liquid effluents by ion exchange resins. Part II: cadmium(II)/sulphate/Lewatit TP260. Rev. Metal. 38 (5), 348–352. https://doi.org/10.3989/revmetalm.2002.v38.i5.418

Alguacil, F.J. (2003). The removal of toxic metals from liquid effluents by ion exchange resins. Part III: copper(II)/sulphate/Amberlite 200. Rev. Metal. 39 (3), 205–209. https://doi.org/10.3989/revmetalm.2003.v39.i3.330

Alguacil, F.J. (2017). The removal of toxic metals from liquid effluents by ion exchange resins. Part IV: chromium(III)/H+/Lewatit SP112. Rev. Metal. 53 (2), e093.

Alguacil, F.J., Coedo, A.G., Dorado, T., Padilla, I. (2002). The removal of toxic metals from liquid effluents by ion exchange resins. Part I: chromium(VI)/sulphate/Dowex 1x8. Rev. Metal. 38 (4), 306–311. https://doi.org/10.3989/revmetalm.2002.v38.i4.412

Alguacil, F.J., López, F.A., Rodríguez, O., Martinez-Ramirez, S., García-Díaz, I. (2016). Sorption of indium (III) onto carbon nanotubes. Ecotox. Environ. Safe. 130, 81–86. https://doi.org/10.1016/j.ecoenv.2016.04.008 PMid:27085001

Alonso, M., López-Delgado, A., Sastre, A.M., Alguacil, F.J. (2006). Kinetic modeling of the facilitated transport of cadmium (II) using Cyanex 923 as ionophore. Chem. Eng. J. 118 (3), 213–219. https://doi.org/10.1016/j.cej.2006.02.006

AlOmar, M.K., Alsaadi, M.A., Jassam, T.M., Akib, S., Hashim, M.A. (2017). Novel deep eutectic solvent-functionalized carbon nanotubes adsorbent for mercury removal from water. J. Colloid. Interf. Sci. 497, 413–421. https://doi.org/10.1016/j.jcis.2017.03.014 PMid:28314146

Drasinac, N., Erjavec, B., Drazic, G., Pintar, A. (2017). Peroxo and gold modified titanium nanotubes for effective removal of methyl orange with CWPO under ambient conditions. Catal. Today 280 (Part 1), 155–164. https://doi.org/10.1016/j.cattod.2016.06.038

El-Bahy, S.M., El-Bahy, Z.M. (2016). Síntesis and characterization of polyamidoxime chelating resin for adsoprtion of Cu(II), Mn(II) and Ni(II) by batch and column study. J. Environ. Chem. Eng. 4 (1), 276–286. https://doi.org/10.1016/j.jece.2015.10.040

Guan, Q.-J., Sun, W., Zhou, G,.Y., Liu, J.-P., Yin, Z.-G. (2016). Recovery of cobalt and nickel in the presence of magnesium and calcium from sulfate solutions by Versatic 10 and mixtures of Versatic 10 and Cyanex 301. T. Nonferr. Metal. Soc. China 26 (3), 865–873. https://doi.org/10.1016/S1003-6326(16)64178-X

Jain, C.K., Malik, D.S., Yadav, A.K. (2016). Applicability of plant based biosorbents in the removal of heavy metals: a review. Environ. Proc. 3 (2), 495–523. https://doi.org/10.1007/s40710-016-0143-5

Kim, J., Kwak, S.-Y. (2017). Efficient and selective removal of heavy metals using microporous layered silicate AMH-3 as sorbent. Chem. Eng. J. 313, 975–982. https://doi.org/10.1016/j.cej.2016.10.143

López Díaz-Pavón, A., Cerpa, A., Alguacil, F.J. (2014). Processing of indium(III) solutions via ion exchange with Lewatit K-2621 resin. Rev. Metal. 50 (2), e010. https://doi.org/10.3989/revmetalm.010

Melo, D.D.Q., Vidal, C.B., Medeiros, T.C., Raulino, G.S.C., Dervanoski, A., Pinheiro, M.D.C., Nascimento, R.F.D. (2016). Biosorption of metal ions using a low cost modified adsorbent (Mauritia flexuosa): experimental design and mathematical modeling. Environ. Technol. 37 (17), 2157–2171. https://doi.org/10.1080/09593330.2016.1144796 PMid:26950526

Moghbeli, M.R., Khajeh, A., Alikhani, M. (2017). Nanosilica reinforced ion-exchange polyHIPE type membrane for removal of nickel ions: Preparation, characterization and adsorption studies. Chem. Eng. J. 309, 552–562. https://doi.org/10.1016/j.cej.2016.10.048

Ogden, M.D., Moon, E.M., Wilson, A., Pepper, S.E. (2017). Application of chelating weak base resin Dowex M4195 to the recovery of uranium from mixed sulfate/chloride media. Chem. Eng. J. 317, 80–89. https://doi.org/10.1016/j.cej.2017.02.041

Otrembska, P., Gega, J. (2016). Separation of nickel(II) and cadmium(II) ions with ion-exchange and membrane processes. Sep. Sci. Technol. 51 (15-16), 2675–2680. https://doi.org/10.1080/01496395.2016.1171784

Taha, A.A., Shreadah, M.A., Heiba, H.F., Ahmed, A.M. (2017). Validity of Egyptian Na-montmorillonite for adsorption of Pb2+, Cd2+ and Ni2+ under acidic conditions: Characterization, isotherm, kinetics, thermodynamics and application study. Asia-Pac. J. Chem. Eng. 12 (2), 292–306. https://doi.org/10.1002/apj.2072

USEPA (2017). Reports National primary and secondary drinking water standards. www.epa.gov (checked 6 september 2017).

Wang, Y., Liu, R. (2017). Comparison of characteristics of twenty-one types of biochar and their ability to remove multi-heavy metals and methylene blue in solution. Fuel Process. Technol. 160, 55–63. https://doi.org/10.1016/j.fuproc.2017.02.019

Yousef, N.S., Farouq, R., Hazzaa, R. (2016). Adsorption kinetics and isotherms for the removal of nickel ions from aqueous solutions by an ion-exchange resin: application of two and three parameters isotherm models. Desalin. Water Treat. 57 (46), 21925–21938. https://doi.org/10.1080/19443994.2015.1132474

Zhang, J., Chen, Y. (2016). Uptake of Fe(III), Ag(I), Ni(II) and Cu(II) by salicyl acid-type chelating resin prepared via surface-initiated atom transfer radical polymerization. RSC Adv. 6 (73), 69370–69380. https://doi.org/10.1039/C6RA11101G

Published

2017-12-30

How to Cite

Alguacil, F. J. (2017). The removal of toxic metals from liquid effluents by ion exchange resins. Part V: Nickel(II)/H+/Dowex C400. Revista De Metalurgia, 53(4), e105. https://doi.org/10.3989/revmetalm.105

Issue

Section

Articles

Most read articles by the same author(s)

1 2 > >>