The removal of toxic metals from liquid effluents by ion exchange resins. Part VIII: Arsenic(III)/OH−/Dowex 1x8

Authors

DOI:

https://doi.org/10.3989/revmetalm.132

Keywords:

Arsenic(III), Dowex 1x8, Liquid effluents, Multiwalled carbon nanotubes, Removal

Abstract


The removal of the toxic arsenic(III) from aqueous solutions is investigated using the ion exchange technology and the Dowex 1x8 resin. Different experimental variables which may influence the uptake equilibrium are considered: stirring speed of the system, temperature, NaOH concentration in the solution, and resin dosage. The anion exchange equilibrium is endothermic and non-spontaneous, in the 20 °C - 60 °C range of temperatures the metal uptake onto the resin responded to the pseudo-second order kinetic model, however, the loading mechanism is temperature dependent in the 20 °C - 40 °C range. The linear fit of the experimental data showed that the loading isotherm is best explained by the Freundlich model. The results of arsenic(III) uptake in the present system are compared against the metal uptake which one can obtain with other resins and multiwalled carbon nanotubes. Arsenic(III) loaded onto the resin is eluted by the use of 1M HCl solution.

Downloads

Download data is not yet available.

References

Ahmad, N.F., Kamboh, M.A., Nodeh, H.R., Abd Halim, S.N.B, Mohamad, S. (2017). Synthesis of piperazine functionalized magnetic sporopollenin: a new organic-inorganic hybrid material for the removal of lead(II) and arsenic(III) from aqueous solution. Environ. Sci. Pollut. Res. 24 (27), 21846–21858. https://doi.org/10.1007/s11356-017-9820-9 PMid:28776296

Akartasse, N., Mejdoubi, E., Razzouki, B., Azzaoui, K., Jodeh, S., Hamed, O., Ramdani, M., Lamhamdi, A., Berrabah, M., Lahmass, I. (2017). Natural product based composite for extraction of arsenic (III) from waste water. Chem. Cent. J. 11, article number 33. https://doi.org/10.1186/s13065-017-0261-9 PMid:29086813 PMCid:PMC5389956

Alguacil, F.J., Coedo, A.G., Dorado, T., Padilla, I. (2002). The removal of toxic metals from liquid effluents by ion exchange resins. Part I: chromium(VI)/sulphate/Dowex 1x8. Rev. Metal. 38 (4), 306–311. https://doi.org/10.3989/revmetalm.2002.v38.i4.412

Alguacil, F.J. (2002). The removal of toxic metals from liquid effluents by ion exchange resins. Part II: cadmium(II)/sulphate/Lewatit TP260. Rev. Metal. 38 (5), 348–352. https://doi.org/10.3989/revmetalm.2002.v38.i5.418

Alguacil, F.J. (2003). The removal of toxic metals from liquid effluents by ion exchange resins. Part III: copper(II)/sulphate/Amberlite 200. Rev. Metal. 39 (3), 205–209. https://doi.org/10.3989/revmetalm.2003.v39.i3.330

Alguacil, F.J., López, F.A., Rodriguez, O., Martinez-Ramirez, S., Garcia-Díaz, I. (2016). Sorption of indium (III) onto carbon nanotubes. Ecotox. Environ. Safe. 130, 81–86. https://doi.org/10.1016/j.ecoenv.2016.04.008 PMid:27085001

Alguacil, F.J. (2017a). The removal of toxic metals from liquid effluents by ion exchange resins. Part IV: chromium(III)/H+/Lewatit SP112. Rev. Metal. 53 (2), e093.

Alguacil, F.J. (2017b). The removal of toxic metals from liquid effluents by ion exchange resins. Part V: nickel(II)/H+/Dowex C400. Rev. Metal. 53 (4), e105. https://doi.org/10.3989/revmetalm.105

Alguacil, F.J. (2018a). The removal of toxic metals from liquid effluents by ion exchange resins. Part VI: manganese(II)/H+/Lewatit K2621. Rev. Metal. 54 (2), e116. https://doi.org/10.3989/revmetalm.116

Alguacil, F.J. (2018b). The removal of toxic metals from liquid effluents by ion exchange resins. Part VII: manganese(VII)/H+/Amberlite 958. Rev. Metal. 54 (3), e125. https://doi.org/10.3989/revmetalm.125

ATSDR (2013). Case studies in environmental medicine. Agency for Toxic Substances and Disease Registry, USA. Checked January 2018: www.atsdr.cdc.gov/csem/csem.html.

Babaee, Y., Mulligan, C.N., Rahaman, M.S. (2018). Removal of arsenic (III) and arsenic (V) from aqueous solutions through adsorption by Fe/Cu nanoparticles. Chem. Technol. Biotechnol. 93 (1), 63–71. https://doi.org/10.1002/jctb.5320

Emsley, J. (2005). The elements of murder. A History of Poison. Oxford University Press, Oxford, Great Britain. PMCid:PMC1739363

Flora, S.J.S. (2015). Handbook of arsenic toxicology. Elsevier, Amsterdam, The Netherlands.

Hughes, M.F., Beck, B.D., Chen, Y., Lewis, A.S., Tomas, D.J. (2011). Arsenic exposure and toxicology: a historical perspective. Toxicol. Sci. 123 (2), 305–332. https://doi.org/10.1093/toxsci/kfr184 PMid:21750349 PMCid:PMC3179678

Inaba, K., Haga, M., Ueda, K., Itoh, A., Takemoto, T., Yoshikawa, H. (2017). New Adsorbent for Removal of Inorganic Arsenic(III) from Groundwater. Chem. Lett. 46 (1), 58–60. https://doi.org/10.1246/cl.160768

Kang, Y.G., Yoon, H., Lee, W., Kim, E.J., Chang, Y.S. (2018). Comparative study of peroxide oxidants activated by nZVI: Removal of 1,4-Dioxane and arsenic(III) in contaminated waters. Chem. Eng. J. 334, 2511–2519. https://doi.org/10.1016/j.cej.2017.11.076

Liu, Z., Chen, J., Wu, Y., Li, Y., Zhao, J., Na, P. (2018). Synthesis of magnetic orderly mesoporous alpha-Fe2O3 nanocluster derived from MIL-100(Fe) for rapid and efficient arsenic(III,V) removal. J. Hazard. Mater. 343, 304–314. https://doi.org/10.1016/j.jhazmat.2017.09.047 PMid:28988056

López Díaz-Pavón, A., Cerpa, A., Alguacil, F.J. (2014). Processing of indium(III) solutions via ion exchange with Lewatit K-2621 resin. Rev. Metal. 50 (2), e010. https://doi.org/10.3989/revmetalm.010

Mal'tseva, T.V., Kolomiets, E.A., Vasilyuk, S.L. (2017). Hybrid adsorbents based on hydrated oxides of Zr(IV), Ti(IV), Sn(IV), and Fe(III) for arsenic removal. J. Water Chem. Technol. 39 (4), 214–219. https://doi.org/10.3103/S1063455X17040063

Puigdomenech, I. (2018). MEDUSA (Make Equilibrium Diagrams Using Sophisticated Algorithms) program. Royal Institute of Technology. Sweden. http://www.ke-mi.kth.se/medusa also, https://sites.google.com/site/chemdiagr/. Cheked January 2018.

Roy, P., Dey, U., Chattoraj, S., Mukhopadhyay, D., Mondal, N.K. (2017). Modeling of the adsorptive removal of arsenic(III) using plant biomass: a bioremedial approach. Appl. Water Sci. 7 (3), 1307–1321. https://doi.org/10.1007/s13201-015-0339-2

Schouwenaars, R., Montoya-Bautista, C.V., Isaacs-Páez, E.D., Solís-López, M., Ramirez-Zamora, R.M. (2017). Removal of arsenic III and V from laboratory solutions and contaminated groundwater by metallurgical slag through anion-induced precipitation. Environ. Sci. Pollut. Res. 24 (32), 25034–25046. https://doi.org/10.1007/s11356-017-0120-1 PMid:28920151

Sert, S., Celik, A., Tirtom, V.N. (2017). Removal of arsenic(III) ions from aqueous solutions by modified hazelnut shell. Desalin. Water Treat. 75, 115–123. https://doi.org/10.5004/dwt.2017.20725

Tavakkoli, N., Habibollahi, S., Tehrani, S.A. (2017). Separation and preconcentration of arsenic(III) ions from aqueous media by adsorption on MWCNTs. Arab. J. Chem. 10 (Supp. 2), S3682-S3686. https://doi.org/10.1016/j.arabjc.2014.04.007

Venkatesan, G., Narayanan, S.L. (2018). Synthesis of Fe2O3-coated and HCl-treated bauxite ore waste for the adsorption of arsenic (III) from aqueous solution: Isotherm and kinetic models. Chem. Eng. Commun. 205 (1), 34–46. https://doi.org/10.1080/00986445.2017.1370708

Wang, S., Li, P., Zhang, X., Zheng, S., Zhang, Y. (2017). Selective adsorption of lithium from high Mg-containing brines using HxTiO3 ion sieve. Hydrometallurgy 174, 21–28. https://doi.org/10.1016/j.hydromet.2017.09.009

Yousefsani, B.S., Pourahmad, J., Hosseinzadeh, H. (2017). The mechanism of protective effect of crocin against liver mitochondrial toxicity caused by arsenic III. Toxicol. Mech. Method. 28 (2), 105–114 https://doi.org/10.1080/15376516.2017.1368054 PMid:28812436

Published

2018-12-30

How to Cite

Alguacil, F. J., & Escudero, E. (2018). The removal of toxic metals from liquid effluents by ion exchange resins. Part VIII: Arsenic(III)/OH−/Dowex 1x8. Revista De Metalurgia, 54(4), e132. https://doi.org/10.3989/revmetalm.132

Issue

Section

Articles

Most read articles by the same author(s)

1 2 > >>