Microstructural properties and tribological behaviours of Ultra-High frequency induction rapid sintered Al-WC composites
DOI:
https://doi.org/10.3989/revmetalm.163Keywords:
Al-WC, Aluminum composite, Friction, Induction sintering, Pin on disc, WearAbstract
In this study, sinterability of 1, 3, 5, 9 and 15 wt.% WC reinforced aluminum matrix composite samples by induction fast and conventional sintering methods was investigated. For this purpose, firstly, it was pressed by unaxial cold pressing method under 200 MPa pressure. Some of these raw samples were sintered by ultra-high frequency induction fast sintering method at 600 ºC temperature for 300 sec., while the other part of the samples were sintered by 600 °C for 1800 sec. The density and hardness values of sintered composite samples were measured and microstructural properties, abrasion and friction behaviours were investigated. In this study, it was seen that increased WC reinforcement ratio and abrasion resistance and friction coefficient increased together. In addition, this study showed that ultra-high frequency sintering is as successful as traditional method in Al-WC composite production.
Downloads
References
Ao, M., Liu, H., Dong, C. (2019). The effect of La2O3 addition on intermetallic-free aluminium matrix composites reinforced with TiC and Al2O3 ceramic particles. Ceram. Int. 45 (9), 12001-12009. https://doi.org/10.1016/j.ceramint.2019.03.093
ASTM B962 (2017). Standard Test Methods for Density of Compacted or Sintered Powder Metallurgy (PM) Products Using Archimedes' Principle. ASTM International, West Conshohocken, PA.
ASTM E10-18 (2018). Standard Test Method for Brinell Hardness of Metallic Materials. ASTM International, West Conshohocken, PA.
Banerjee, S., Poria, S., Sutradhar, G., Sahoo, P. (2019). Dry sliding tribological behavior of AZ31-WC nano-composites. J. Magnesium Alloys 7 (2), 315-327. https://doi.org/10.1016/j.jma.2018.11.005
Baran, J.D., Grönbeck, H., Hellman, A. (2014). Mechanism for limiting thickness of thin oxide films on aluminum. Phys. Rev. Lett. 112 (14), 1-5. https://doi.org/10.1103/PhysRevLett.112.146103 PMid:24765992
Barbera, D., Chen, H., Liu, Y. (2016). Creep-fatigue behaviour of aluminum alloy-based metal matrix composite. Int. J. Press. Vessels Pip. 139-140, 159-172. https://doi.org/10.1016/j.ijpvp.2016.02.004
Bernoosi, S., Khosroshahi, R.A., Mousavian, R.T. (2014). Mechanical properties of hot-pressed Al-4.5 wt. % Cu/WC composite. JUFGNSM 47 (2), 63-70.
Busquets, D., Gomez, L., Amigó, V., Salvador-Moya, M.D. (2005). Study of mechanical properties on powdermetalurgy aluminium matrix composites fabricated by stamping or extrusion. Rev. Metal. 41 (5), 365-373. https://doi.org/10.3989/revmetalm.2005.v41.i5.226
Cardoso, J.P., Puga, J., Ferro Rocha, A.M., Fernandes, C.M., Senos, A.M.R. (2019). WC - (Cu: AISI304) composites processed from high energy ball milled powders. Int. J. Refract. Met. Hard Mater. 84, 1-8. https://doi.org/10.1016/j.ijrmhm.2019.104990
Durmuş, H., Gül, C., Çömez, N., Yurddaşkal, M. (2019). An investigation into the wear behavior of aged Alumix321/SiC composites fabricated by hot pressing. Rev. Metal. 55 (3), e148.
Egizabal, P., Merchan, M., Garcia-de-Cortazar, M., Plaza, L.M., Torregaray, A. (2010). Development and characterization of a metal matrix composite of aluminium 6061 and TiB2 particulates. Rev. Metal. 46 (Nº Extra), 128-132. https://doi.org/10.3989/revmetalmadrid.13XIIPMS
Fathy, A., El-Kady, O., Mohammed, M.M.M. (2015). Effect of iron addition on microstructure, mechanical and magnetic properties of Al-matrix composite produced by powder metallurgy route. Trans. Nonferrous Met. Soc. China 25 (1), 46-53. https://doi.org/10.1016/S1003-6326(15)63577-4
Fernandez, R., Garcia-Alonso, E., Gonzales-Doncel, G. (2005). Creep behavior of a PM Al6061-15 vol % SiCw metal matrix composite. Rev. Metal. 41 (Nº Extra), 239-243, https://doi.org/10.3989/revmetalm.2005.v41.iExtra.1032
Gezici, L.U., Gül, B., Çavdar, U. (2018). The mechanical and tribological characteristics of aluminum-titanium dioxide composite. Rev. Metal. 54 (2), e119.
Ghasali, E., Pakseresht, A.H., Agheli, M., Marzbanpour, H., Ebadzadeh, T. (2015). WC-Co particles reinforced aluminum matrix by conventional and microwave sintering. Mater. Res. 18 (6), 1197-1202. https://doi.org/10.1590/1516-1439.027115
Giugliano, D., Barbera, D., Chen, H., Cho, N.K., Liu, Y. (2019). Creep-fatigue and cyclically enhanced creep mechanisms in aluminium based metal matrix composites. Eur. J. Mech. A. Solids 74, 66-80. . https://doi.org/10.1016/j.euromechsol.2018.10.015
Gopal Krishna, U.B., Ranganatha, P., Rajesh, G.L., Auradi, V., Mahendra Kumar, S., Vasudeva, B. (2019). Studies on dry sliding wear characteristics of cermet WC-Co particulate reinforced Al7075 metal matrix composite. Proceedings: Materials Today, Vol. 16 (Part.2), 343-350. https://doi.org/10.1016/j.matpr.2019.05.100
Guo, B., Chen, B., Zhang, X., Cen, X., Wang, X., Song, M., Ni, S., Yi, J., Shen, T., Du, Y. (2018). Exploring the size effects of Al4C3 on the mechanical properties and thermal behaviors of Al-based composites reinforced by SiC and carbon nanotubes. Carbon 135, 224-235. https://doi.org/10.1016/j.carbon.2018.04.048
He, C., Zhou, Q., Liu, J., Geng, X., Cai, Q. (2008). Effect of size of reinforcement on thickness of anodized coatings on SiC/Al matrix composites. Mater. Lett. 62 (16), 2441-2443. https://doi.org/10.1016/j.matlet.2007.12.016
Hegde, N.T., Pai, D., Hegde, R. (2019). Heat treatment and mechanical characterization of LM-25/tungsten carbide metal matrix composites. Proceedings: Materials Today, Vol. 19 (Part. 2), 810-817. https://doi.org/10.1016/j.matpr.2019.08.136
Idusuyi, N., Olayinka, J.I. (2019). Dry sliding wear characteristics of aluminum metal matrix composites: abrief overview. J. Mater. Res. Technol. 8 (3), 3338-3346. https://doi.org/10.1016/j.jmrt.2019.04.017
Imran, M., Khan, A.R.A. (2019). Characterization of Al-7075 metal matrix composite: a review. J. Mater. Res. Technol. 8 (3), 3347-3356. https://doi.org/10.1016/j.jmrt.2017.10.012
Jalilvand, M.M., Mazaheri, Y., Heidarpour, A., Roknian, M. (2019). Development of A356/Al2O3+SiO2 surface hybrid nanocomposite by friction stir processing. Surf. Coat. Technol. 360, 121-132. https://doi.org/10.1016/j.surfcoat.2018.12.126
Khodabakshi, F., Gerlich, A.P., Verma, D., Haghshenas, M. (2019). Nano-indentation behavior of layered ultra-fine grained AA8006 aluminum alloy and AA8006-B4C nanostructured nanocomposite produced by accumulative fold forging process. Mat. Sci. Eng. A. 744, 120-136. https://doi.org/10.1016/j.msea.2018.12.013
Krishan, P.K., Christy, J.V., Arunachalam, R., Mourad, A.-H. I., Muraliraja, R., Al-Maharabi, M., Murali, V., Chandra, M.M. (2019). Production of aluminum alloy-based metal matrix composites using scrap aluminum alloy and waste materials: Influence on microstructure and mechanical properties. J. Alloys Compd. 748, 1047-1061. https://doi.org/10.1016/j.jallcom.2019.01.115
Kvashnin, D.G., Firestein, K.L., Popov, Z.I., Corthay, S., Sorokin, P.B., Golberg, D.V., Shtansky, D.V. (2019). Al - BN interaction in a high-strength lightweight Al/BN metal-matrix composite: Theoretical modelling and experimental verification. J. Alloys Compd. 782, 875-880. https://doi.org/10.1016/j.jallcom.2018.12.261
Li, C., Li, S., Liu, C., Zhang, Y., Deng, P., Guo, Y., Wang, J., Wang, Y. (2019). Effect of WC addition on microstructure and tribological properties of bimodal aluminum composite coatings fabricated by laser surface alloying. Mater. Chem. Phys. 234, 9-15. https://doi.org/10.1016/j.matchemphys.2019.05.089
Pakdel, A., Witecka, A., Rydzek, G., Shri, D.N.A. (2017). A comprehensive microstructural analysis of Al-WC micro- and nano-composites prepared by spark plasma sintering. Mater. Design 119, 225-234. https://doi.org/10.1016/j.matdes.2017.01.064
Pal, A., Poria, S., Sutradhar, G., Sahoo, P. (2018). Tribological behavior of Al-WC nano-composites fabricated by ultrasonic cavitation assisted stir-cast method. Mater. Res. Express. 5 (3), 1-16. https://doi.org/10.1088/2053-1591/aab577
Panwar N., Chauhan, A. (2018). Fabrication methods of particulate reinforced aluminum metal matrix composite-a review. Proceedings Materials Today 5 (2), 5933-5939. https://doi.org/10.1016/j.matpr.2017.12.194
Philip, S.V., Selvam, J.D.R., Rajakumar, S.R., Mashninini, P.M. (2019). Microstructure Characterization of in-situ formed Al2O3-TiB2 AMCs particles on AA6061 aluminium matrix composites. Proceedings Materials Today 16 (2), 574-578. https://doi.org/10.1016/j.matpr.2019.05.130
Ravindran, S., Mani, N., Balaji, S., Abhijith, M., Surendaran, K. (2019). Mechanical behaviour of aluminium hybrid metal matrix composite-A review. Proceedings Materials Today 16 (2), 1020-1033. https://doi.org/10.1016/j.matpr.2019.05.191
Rodrigo, P., Poza, P., Utrilla, M.V., Ureña, A. (2005). Effect of ageing on the mechanical behaviour of aluminium alloy AA2009 reinforced with SiC particles. Rev. Metal. 41 (4), 298-307. https://doi.org/10.3989/revmetalm.2005.v41.i4.218
Roseline, S., Paramisav, V. (2019). Corrosion behaviour of heat treated aluminum metal matrix composites reinforced with fused zirconia alumina 40. J. Alloys Compd. 799, 205-215. https://doi.org/10.1016/j.jallcom.2019.05.185
Sarı Çavdar, P., Çavdar, U. (2015). The evaluation of different environments in ultra-high frequency induction sintered powder metal compacts. Rev. Metal. 51 (1), e36. https://doi.org/10.3989/revmetalm.036
Selvakumar, N., Gnanasundaajayaraja, B., Rajeshkumar, P. (2016). Enhancing the properties of Al-WC nanocomposites using liquid metallurgy. Exp. Tech. 40, 129-135. https://doi.org/10.1007/s40799-016-0015-y
Shinde, D.M., Poria, S., Sahoo, P. (2019). Synthesis and characterization of Al-B4C nano composites. Proceedings Materials Today 19 (2), 170-176. https://doi.org/10.1016/j.matpr.2019.06.641
Simon, A., Lipusz, D., Baumli, P., Balint, P., Kaptay, G., Gergely, G., Sfikas, A., Lekatou, A., Karantzalis, A., Gacsi, Z. (2015). Microstructure and mechanical properties of Al-WC composites. Arch. Metall. Mater. 60 (2), 389-393. https://doi.org/10.1515/amm-2015-0164
Sivakumar, S., Thimmappa, S.K., Golla, B.R. (2018). Corrosion behavior of extremely hard Al-Cu/Mg-SiC light metal alloy composites. J. Alloys Compd. 767, 703-711. https://doi.org/10.1016/j.jallcom.2018.07.117
Sun, R., Lei, Y. (2008). Microstructure and hardness of laser clad SiCp-Al composite coatings on Al alloys. Mater. Lett. 62 (17-18), 3272-3275. https://doi.org/10.1016/j.matlet.2008.02.041
Taştan, M., Gökozan, H., Taşkın, S., Çavdar, U. (2015). Comparative energy consumption analyses of an ultra high frequency induction heating system for material processing applications. Rev. Metal. 51 (3), e46. https://doi.org/10.3989/revmetalm.046
Taştan, M., Gökozan, H., Sarı Çavdar, P., Soy, G., Çavdar, U. (2019). Analysis of artificial aging with induction and energy costs of 6082 Al and 7075 Al materials. Rev. Metal. 55 (1), e137. . https://doi.org/10.3989/revmetalm.137
Torralba, J.M., Campos, M. (2014). Towards high performance in powder metallurgy. Rev. Metal. 50 (2), e017. https://doi.org/10.3989/revmetalm.017
Trujillo-Vazquez, E., Pech-Canul, M.I., Guia-Tello, J.C., Pech-Canul, M.A. (2016). Surface chemistry modification for elimination of hydrophilic Al4C3 in B4C/Al composites. Mater. Design 89, 94-101. https://doi.org/10.1016/j.matdes.2015.09.149
Wang, X., Wood, J.V., Sui, Y., Lu, H. (1998). Formation of intermetallic compound in iron-aluminum alloys. J. of Shanghai Univ. 2, 305-310. https://doi.org/10.1007/s11741-998-0045-5
Yandouzi, M., Richer, P., Jodoin, B. (2009). SiC particulate reinforced Al-12Si alloy composite coatings produced by the pulsed gas dynamic spray process: Microstructure and properties. Surf. Coat. Tech. 203 (20-21), 3260-3270. https://doi.org/10.1016/j.surfcoat.2009.04.001
Yuying, W., Xiangfa, L., Guolong, M., Chong, L., Junqing, Z. (2010). High energy milling method to prepare Al/WC composite coatings in Al-Si alloys. J. Alloys Compd. 497 (1-2), 139-141. https://doi.org/10.1016/j.jallcom.2010.03.086
Zhang, W.Y., Du, Y.H., Zhang, P., Wang, Y.J. (2019). Air-isolated stir casting of homogeneous Al-SiC composite with no air entrapment and Al4C3. J. Mater. Process Tech. 271, 226-236. https://doi.org/10.1016/j.jmatprotec.2019.04.001
Zhou, Y., Wen, S., Wang, C., Duan, L., Wei, Q., Shi, Y. (2019). Effect of TiC content on the Al-15Si alloy processed by selective laser melting: Microstructure and mechanical properties. Opt. Laser Technol. 120, 1-8. https://doi.org/10.1016/j.optlastec.2019.105719
Ziejewska, C., Marczyk, J., Szewczyk-Nykiel, A., Nykiel, M., Hebda, M. (2019). Influence of size and volume share of WC particles on the properties of sintered metal matrix composites. Adv. Powder Technol. 30 (4), 835-842. https://doi.org/10.1016/j.apt.2019.01.013
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the printed and online versions of this Journal are the property of Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a “Creative Commons Attribution 4.0 International” (CC BY 4.0) License. You may read the basic information and the legal text of the license. The indication of the CC BY 4.0 License must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the published by the Editor, is not allowed.