Propiedades microestructurales y comportamiento tribológico de composites Al-WC sinterizados mediante inducción rápida a ultra alta frecuencia

Autores/as

DOI:

https://doi.org/10.3989/revmetalm.163

Palabras clave:

Al-WC, Composites de aluminio, Desgaste, Fricción, Pin on disc, Sinterización por inducción

Resumen


En este estudio, se analiza la sinterabilidad de composites de matriz de aluminio reforzados con WC 1, 3, 5, 9 y 15% (en peso) y obtenidos por inducción rápida y métodos tradiconales. El procedimiento seguido fue, en primer lugar, presionar mediante un método de prensado en frío no axial con una presión de 200 MPa. Algunas de estas muestras patrones se sinterizaron mediante un método de sinterización por inducción rápida a ultra alta frecuencia, durante 300 s a temperatura de 600 °C. Otras muestras se sinterizaron a 600 °C durante 1800 s. Se midieron los valores de densidad y dureza de los composites sinterizados y se ensayaron las propiedades microestructurales, y el comportamiento de abrasión y de fricción. Se observó que si se aumentaba la relación de refuerzo de WC la resistencia a la abrasión y el coeficiente de fricción tambien aumentaban. Finalmente, el estudio mostró que la sinterización a ultra alta frecuencia es una alternativa tan válida como el método tradicional de obtención de composites de Al-WC.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Ao, M., Liu, H., Dong, C. (2019). The effect of La2O3 addi­tion on intermetallic-free aluminium matrix compos­ites reinforced with TiC and Al2O3 ceramic particles. Ceram. Int. 45 (9), 12001-12009. https://doi.org/10.1016/j.ceramint.2019.03.093

ASTM B962 (2017). Standard Test Methods for Density of Compacted or Sintered Powder Metallurgy (PM) Products Using Archimedes' Principle. ASTM International, West Conshohocken, PA.

ASTM E10-18 (2018). Standard Test Method for Brinell Hard­ness of Metallic Materials. ASTM International, West Conshohocken, PA.

Banerjee, S., Poria, S., Sutradhar, G., Sahoo, P. (2019). Dry slid­ing tribological behavior of AZ31-WC nano-composites. J. Magnesium Alloys 7 (2), 315-327. https://doi.org/10.1016/j.jma.2018.11.005

Baran, J.D., Grönbeck, H., Hellman, A. (2014). Mechanism for limiting thickness of thin oxide films on aluminum. Phys. Rev. Lett. 112 (14), 1-5. https://doi.org/10.1103/PhysRevLett.112.146103 PMid:24765992

Barbera, D., Chen, H., Liu, Y. (2016). Creep-fatigue behav­iour of aluminum alloy-based metal matrix composite. Int. J. Press. Vessels Pip. 139-140, 159-172. https://doi.org/10.1016/j.ijpvp.2016.02.004

Bernoosi, S., Khosroshahi, R.A., Mousavian, R.T. (2014). Mechanical properties of hot-pressed Al-4.5 wt. % Cu/WC composite. JUFGNSM 47 (2), 63-70.

Busquets, D., Gomez, L., Amigó, V., Salvador-Moya, M.D. (2005). Study of mechanical properties on powdermetalurgy aluminium matrix composites fabricated by stamping or extrusion. Rev. Metal. 41 (5), 365-373. https://doi.org/10.3989/revmetalm.2005.v41.i5.226

Cardoso, J.P., Puga, J., Ferro Rocha, A.M., Fernandes, C.M., Senos, A.M.R. (2019). WC - (Cu: AISI304) compos­ites processed from high energy ball milled powders. Int. J. Refract. Met. Hard Mater. 84, 1-8. https://doi.org/10.1016/j.ijrmhm.2019.104990

Durmuş, H., Gül, C., Çömez, N., Yurddaşkal, M. (2019). An investigation into the wear behavior of aged Alumix321/SiC composites fabricated by hot pressing. Rev. Metal. 55 (3), e148.

Egizabal, P., Merchan, M., Garcia-de-Cortazar, M., Plaza, L.M., Torregaray, A. (2010). Development and character­ization of a metal matrix composite of aluminium 6061 and TiB2 particulates. Rev. Metal. 46 (Nº Extra), 128-132. https://doi.org/10.3989/revmetalmadrid.13XIIPMS

Fathy, A., El-Kady, O., Mohammed, M.M.M. (2015). Effect of iron addition on microstructure, mechanical and magnetic properties of Al-matrix composite produced by powder metallurgy route. Trans. Nonferrous Met. Soc. China 25 (1), 46-53. https://doi.org/10.1016/S1003-6326(15)63577-4

Fernandez, R., Garcia-Alonso, E., Gonzales-Doncel, G. (2005). Creep behavior of a PM Al6061-15 vol % SiCw metal matrix composite. Rev. Metal. 41 (Nº Extra), 239-243, https://doi.org/10.3989/revmetalm.2005.v41.iExtra.1032

Gezici, L.U., Gül, B., Çavdar, U. (2018). The mechanical and tribological characteristics of aluminum-titanium dioxide composite. Rev. Metal. 54 (2), e119.

Ghasali, E., Pakseresht, A.H., Agheli, M., Marzbanpour, H., Ebadzadeh, T. (2015). WC-Co particles reinforced aluminum matrix by conventional and microwave sin­tering. Mater. Res. 18 (6), 1197-1202. https://doi.org/10.1590/1516-1439.027115

Giugliano, D., Barbera, D., Chen, H., Cho, N.K., Liu, Y. (2019). Creep-fatigue and cyclically enhanced creep mecha­nisms in aluminium based metal matrix composites. Eur. J. Mech. A. Solids 74, 66-80. . https://doi.org/10.1016/j.euromechsol.2018.10.015

Gopal Krishna, U.B., Ranganatha, P., Rajesh, G.L., Auradi, V., Mahendra Kumar, S., Vasudeva, B. (2019). Studies on dry sliding wear characteristics of cermet WC-Co particulate reinforced Al7075 metal matrix composite. Proceedings: Materials Today, Vol. 16 (Part.2), 343-350. https://doi.org/10.1016/j.matpr.2019.05.100

Guo, B., Chen, B., Zhang, X., Cen, X., Wang, X., Song, M., Ni, S., Yi, J., Shen, T., Du, Y. (2018). Exploring the size effects of Al4C3 on the mechanical properties and thermal behav­iors of Al-based composites reinforced by SiC and carbon nanotubes. Carbon 135, 224-235. https://doi.org/10.1016/j.carbon.2018.04.048

He, C., Zhou, Q., Liu, J., Geng, X., Cai, Q. (2008). Effect of size of reinforcement on thickness of anodized coatings on SiC/Al matrix composites. Mater. Lett. 62 (16), 2441-2443. https://doi.org/10.1016/j.matlet.2007.12.016

Hegde, N.T., Pai, D., Hegde, R. (2019). Heat treatment and mechanical characterization of LM-25/tungsten carbide metal matrix composites. Proceedings: Materials Today, Vol. 19 (Part. 2), 810-817. https://doi.org/10.1016/j.matpr.2019.08.136

Idusuyi, N., Olayinka, J.I. (2019). Dry sliding wear character­istics of aluminum metal matrix composites: abrief over­view. J. Mater. Res. Technol. 8 (3), 3338-3346. https://doi.org/10.1016/j.jmrt.2019.04.017

Imran, M., Khan, A.R.A. (2019). Characterization of Al-7075 metal matrix composite: a review. J. Mater. Res. Technol. 8 (3), 3347-3356. https://doi.org/10.1016/j.jmrt.2017.10.012

Jalilvand, M.M., Mazaheri, Y., Heidarpour, A., Roknian, M. (2019). Development of A356/Al2O3+SiO2 surface hybrid nanocomposite by friction stir processing. Surf. Coat. Technol. 360, 121-132. https://doi.org/10.1016/j.surfcoat.2018.12.126

Khodabakshi, F., Gerlich, A.P., Verma, D., Haghshenas, M. (2019). Nano-indentation behavior of layered ultra-fine grained AA8006 aluminum alloy and AA8006-B4C nanostructured nanocomposite produced by accumula­tive fold forging process. Mat. Sci. Eng. A. 744, 120-136. https://doi.org/10.1016/j.msea.2018.12.013

Krishan, P.K., Christy, J.V., Arunachalam, R., Mourad, A.-H. I., Muraliraja, R., Al-Maharabi, M., Murali, V., Chandra, M.M. (2019). Production of aluminum alloy-based metal matrix composites using scrap aluminum alloy and waste materials: Influence on microstructure and mechanical properties. J. Alloys Compd. 748, 1047-1061. https://doi.org/10.1016/j.jallcom.2019.01.115

Kvashnin, D.G., Firestein, K.L., Popov, Z.I., Corthay, S., Sorokin, P.B., Golberg, D.V., Shtansky, D.V. (2019). Al - BN interaction in a high-strength lightweight Al/BN metal-matrix composite: Theoretical modelling and experi­mental verification. J. Alloys Compd. 782, 875-880. https://doi.org/10.1016/j.jallcom.2018.12.261

Li, C., Li, S., Liu, C., Zhang, Y., Deng, P., Guo, Y., Wang, J., Wang, Y. (2019). Effect of WC addition on microstruc­ture and tribological properties of bimodal aluminum composite coatings fabricated by laser surface alloying. Mater. Chem. Phys. 234, 9-15. https://doi.org/10.1016/j.matchemphys.2019.05.089

Pakdel, A., Witecka, A., Rydzek, G., Shri, D.N.A. (2017). A comprehensive microstructural analysis of Al-WC micro- and nano-composites prepared by spark plasma sinter­ing. Mater. Design 119, 225-234. https://doi.org/10.1016/j.matdes.2017.01.064

Pal, A., Poria, S., Sutradhar, G., Sahoo, P. (2018). Tribological behavior of Al-WC nano-composites fabricated by ultra­sonic cavitation assisted stir-cast method. Mater. Res. Express. 5 (3), 1-16. https://doi.org/10.1088/2053-1591/aab577

Panwar N., Chauhan, A. (2018). Fabrication methods of par­ticulate reinforced aluminum metal matrix composite-a review. Proceedings Materials Today 5 (2), 5933-5939. https://doi.org/10.1016/j.matpr.2017.12.194

Philip, S.V., Selvam, J.D.R., Rajakumar, S.R., Mashninini, P.M. (2019). Microstructure Characterization of in-situ formed Al2O3-TiB2 AMCs particles on AA6061 aluminium matrix composites. Proceedings Materials Today 16 (2), 574-578. https://doi.org/10.1016/j.matpr.2019.05.130

Ravindran, S., Mani, N., Balaji, S., Abhijith, M., Surendaran, K. (2019). Mechanical behaviour of aluminium hybrid metal matrix composite-A review. Proceedings Materi­als Today 16 (2), 1020-1033. https://doi.org/10.1016/j.matpr.2019.05.191

Rodrigo, P., Poza, P., Utrilla, M.V., Ureña, A. (2005). Effect of ageing on the mechanical behaviour of aluminium alloy AA2009 reinforced with SiC particles. Rev. Metal. 41 (4), 298-307. https://doi.org/10.3989/revmetalm.2005.v41.i4.218

Roseline, S., Paramisav, V. (2019). Corrosion behaviour of heat treated aluminum metal matrix composites reinforced with fused zirconia alumina 40. J. Alloys Compd. 799, 205-215. https://doi.org/10.1016/j.jallcom.2019.05.185

Sarı Çavdar, P., Çavdar, U. (2015). The evaluation of different environments in ultra-high frequency induction sintered powder metal compacts. Rev. Metal. 51 (1), e36. https://doi.org/10.3989/revmetalm.036

Selvakumar, N., Gnanasundaajayaraja, B., Rajeshkumar, P. (2016). Enhancing the properties of Al-WC nanocompos­ites using liquid metallurgy. Exp. Tech. 40, 129-135. https://doi.org/10.1007/s40799-016-0015-y

Shinde, D.M., Poria, S., Sahoo, P. (2019). Synthesis and char­acterization of Al-B4C nano composites. Proceedings Materials Today 19 (2), 170-176. https://doi.org/10.1016/j.matpr.2019.06.641

Simon, A., Lipusz, D., Baumli, P., Balint, P., Kaptay, G., Gergely, G., Sfikas, A., Lekatou, A., Karantzalis, A., Gacsi, Z. (2015). Microstructure and mechanical prop­erties of Al-WC composites. Arch. Metall. Mater. 60 (2), 389-393. https://doi.org/10.1515/amm-2015-0164

Sivakumar, S., Thimmappa, S.K., Golla, B.R. (2018). Corro­sion behavior of extremely hard Al-Cu/Mg-SiC light metal alloy composites. J. Alloys Compd. 767, 703-711. https://doi.org/10.1016/j.jallcom.2018.07.117

Sun, R., Lei, Y. (2008). Microstructure and hardness of laser clad SiCp-Al composite coatings on Al alloys. Mater. Lett. 62 (17-18), 3272-3275. https://doi.org/10.1016/j.matlet.2008.02.041

Taştan, M., Gökozan, H., Taşkın, S., Çavdar, U. (2015). Com­parative energy consumption analyses of an ultra high frequency induction heating system for material pro­cessing applications. Rev. Metal. 51 (3), e46. https://doi.org/10.3989/revmetalm.046

Taştan, M., Gökozan, H., Sarı Çavdar, P., Soy, G., Çavdar, U. (2019). Analysis of artificial aging with induction and energy costs of 6082 Al and 7075 Al materials. Rev. Metal. 55 (1), e137. . https://doi.org/10.3989/revmetalm.137

Torralba, J.M., Campos, M. (2014). Towards high performance in powder metallurgy. Rev. Metal. 50 (2), e017. https://doi.org/10.3989/revmetalm.017

Trujillo-Vazquez, E., Pech-Canul, M.I., Guia-Tello, J.C., Pech-Canul, M.A. (2016). Surface chemistry modification for elimination of hydrophilic Al4C3 in B4C/Al compos­ites. Mater. Design 89, 94-101. https://doi.org/10.1016/j.matdes.2015.09.149

Wang, X., Wood, J.V., Sui, Y., Lu, H. (1998). Formation of intermetallic compound in iron-aluminum alloys. J. of Shanghai Univ. 2, 305-310. https://doi.org/10.1007/s11741-998-0045-5

Yandouzi, M., Richer, P., Jodoin, B. (2009). SiC particulate reinforced Al-12Si alloy composite coatings produced by the pulsed gas dynamic spray process: Microstructure and properties. Surf. Coat. Tech. 203 (20-21), 3260-3270. https://doi.org/10.1016/j.surfcoat.2009.04.001

Yuying, W., Xiangfa, L., Guolong, M., Chong, L., Junq­ing, Z. (2010). High energy milling method to prepare Al/WC composite coatings in Al-Si alloys. J. Alloys Compd. 497 (1-2), 139-141. https://doi.org/10.1016/j.jallcom.2010.03.086

Zhang, W.Y., Du, Y.H., Zhang, P., Wang, Y.J. (2019). Air-isolated stir casting of homogeneous Al-SiC com­posite with no air entrapment and Al4C3. J. Mater. Process Tech. 271, 226-236. https://doi.org/10.1016/j.jmatprotec.2019.04.001

Zhou, Y., Wen, S., Wang, C., Duan, L., Wei, Q., Shi, Y. (2019). Effect of TiC content on the Al-15Si alloy processed by selective laser melting: Microstructure and mechani­cal properties. Opt. Laser Technol. 120, 1-8. https://doi.org/10.1016/j.optlastec.2019.105719

Ziejewska, C., Marczyk, J., Szewczyk-Nykiel, A., Nykiel, M., Hebda, M. (2019). Influence of size and volume share of WC particles on the properties of sintered metal matrix composites. Adv. Powder Technol. 30 (4), 835-842. https://doi.org/10.1016/j.apt.2019.01.013

Publicado

2020-03-30

Cómo citar

Çavdar, U., Ulvi Gezici, L., Gül, B., & Ayvaz, M. (2020). Propiedades microestructurales y comportamiento tribológico de composites Al-WC sinterizados mediante inducción rápida a ultra alta frecuencia. Revista De Metalurgia, 56(1), e163. https://doi.org/10.3989/revmetalm.163

Número

Sección

Artículos

Artículos más leídos del mismo autor/a