Characterization of CP-Titanium produced via binder jetting and conventional powder metallurgy

Authors

  • Osman İyibilgin Sakarya University, Mechanical Engineering Department. Biomaterials, Energy, Photocatalysis, Enzyme Technology, Nano and Advanced Materials, Additive Manufacturing, Environmental Applications and Sustainability Research and Development Group (BIOENAMS) Sakarya University, Sakarya 54187 https://orcid.org/0000-0002-1288-1920
  • Engin Gepek Sakarya University, Mechanical Engineering Department. Turkish German University, Mechanical Engineering Department, İstanbul-Turkey. Biomedical, Magnetic and Semiconductor Materials Application & Research Center (BIMAS-RC), Sakarya University, Sakarya 54187 https://orcid.org/0000-0001-7340-8363

DOI:

https://doi.org/10.3989/revmetalm.205

Keywords:

Additive manufacturing, Binder jetting, Biomaterials, Porous titanium, Powder metallurgy

Abstract


Titanium (Ti) and its alloys are among the most commonly used materials in biomedical applications. In addition to being biocompatible, these materials have notable low density and high corrosion resistance and mechanical properties. It is difficult or impossible to produce parts with complex geometry using conventional powder metallurgy (PM) method since this method is based on shaping powders under uniaxial forces using molds. Binder Jetting is a kind of additive manufacturing technique that do not need molds to shape powders. This study focuses on comparing the properties of the porous CP-Ti parts produced using PM and Binder Jetting. The parts were sintered for 120 min under Argon atmosphere at 1200 °C. After sintering, approximately 94% and 92% relative density values were achieved in the specimens produced using the PM and the 3D printer, respectively. It was also observed that the sample produced using 25 MPa compacting pressure has a hardness of 317±10 HV0.05 and a compressive (yield) strength of 928 MPa while its counterpart produced using the 3D printer has a hardness of 238±8 HV0.05 and a compressive (yield) strength of 342 MPa. Although the hardness and strength of the specimens produced with the 3D printer were lower than PM ones, their properties are appropriate for producing implants to replace bone structures.

Downloads

Download data is not yet available.

References

Amidon, G.E., Meyer, P.J., Mudie, D.M. (2017). Particle, powder, and compact characterization. In Developing Solid Oral Dosage Forms: Pharmaceutical Theory and Practice. Chapter 10, Second Edition. Elsevier Inc., pp. 271-293. https://doi.org/10.1016/B978-0-12-802447-8.00010-8

Attar, H., Löber, L., Funk, A., Calin, M., Zhang, L.C., Prashanth, K.G., Scudino, S., Zhang, Y., Eckert, J. (2015). Mechanical behavior of porous commercially pure Ti and Ti-TiB composite materials manufactured by selective laser melting. Mater. Sci. Eng. A 625, 350-356. https://doi.org/10.1016/j.msea.2014.12.036

Avila, J.D., Bose, S., Bandyopadhyay, A. (2018). Additive manufacturing of titanium and titanium alloys for biomedical applications. In Titanium in Medical and Dental Applications. Elsevier Inc., pp. 325-343. https://doi.org/10.1016/B978-0-12-812456-7.00015-9

Bai, Y., Williams, C.B. (2018). The effect of inkjetted nanoparticles on metal part properties in binder jetting additive manufacturing. Nanotechnology 29 (39), 395706. https://doi.org/10.1088/1361-6528/aad0bb PMid:29968575

Balbinotti, P., Gemelli, E., Buerger, G., Amin de Lima, S., De Jesus, J., Almeida, N.H., Rodrigues Enriques, V.A., Almeida Soares, G. (2011). Microstructure development on sintered Ti/HA biocomposites produced by powder metallurgy. Mat. Res. 14 (3), 384-393. https://doi.org/10.1590/S1516-14392011005000044

Castillo, S.M., Muñoz, S., Trueba, P., Díaz, E., Torres, Y. (2019). Influence of the Compaction Pressure and Sintering Temperature on the Mechanical Properties of Porous Titanium for Biomedical Applications. Metals 9 (12), 1249. https://doi.org/10.3390/met9121249

Chen, Q., Thouas, G.A. (2015). Metallic implant biomaterials. Mater. Sci. Eng. R 87, 1-57. https://doi.org/10.1016/j.mser.2014.10.001

Cuesta, I.I., Martínez-Pañeda, E., Díaz, A., Alegre, J.M. (2019). Cold isostatic pressing to improve the mechanical performance of additively manufactured metallic components. Materials 12 (15), 2495. https://doi.org/10.3390/ma12152495 PMid:31390786 PMCid:PMC6695705

Domínguez-Trujillo, C., Ternero, F., Rodríguez-Ortiz, J.A., Heise, S., Boccaccini, A.R., Lebrato, J., Torres, Y. (2018). Bioactive coatings on porous titanium for biomedical applications. Surf. Coat. Tech. 349, 584-592. https://doi.org/10.1016/j.surfcoat.2018.06.037

Esteban, P.G., Bolzoni, L., Ruiz-Navas, E.M., Gordo, E. (2011). Introducción al procesado pulvimetalúrgico del titanio. Rev. Metal. 47 (2), 169-187. https://doi.org/10.3989/revmetalmadrid.0943

Francis, L.F. (2016). Powder Processes. In Materials Processing. A Unified Approach to Processing of Metals, Ceramics and Polymers. pp. 343-414. https://doi.org/10.1016/B978-0-12-385132-1.00005-7

Frost, H.M. (1994). Wolff's Law and bone's structural adaptations to mechanical usage: an overview for clinicians. Angle Orthod. 64 (3), 175-188.

Gagg, G., Ghassemieh, E., Wiria, F.E. (2013). Effects of sintering temperature on morphology and mechanical characteristics of 3D printed porous titanium used as dental implant. Mater. Sci. Eng. C 33 (7), 3858-3864. https://doi.org/10.1016/j.msec.2013.05.021 PMid:23910288

Goharian, A., Abdullah, M.R. (2017). Bioinert Metals (Stainless Steel, Titanium, Cobalt Chromium). In Trauma Plating Systems. Biomechanical, Material, Biological, and Clinical Aspects. Elsevier Inc., pp. 115-142. https://doi.org/10.1016/B978-0-12-804634-0.00007-0

Goia, T.S., Violin, K.B., Bressiani, J.C., De Almeida, A.H. (2013). Titanium and Ti-13Nb-13Zr alloy porous implants obtained by space-holder technique with addition of albumin. Key Eng. Mater. 529-530, 574-579. https://doi.org/10.4028/www.scientific.net/KEM.529-530.574

Harun, W.S.W., Manan, N.S., Kamariak, M.S.I., Sharif, S., Zulkifly, A.H., Ahmad, I., Miura, H. (2018). A review of powdered additive manufacturing techniques for Ti-6al-4v biomedical applications. Powder Technol. 331, 74-97. https://doi.org/10.1016/j.powtec.2018.03.010

Karageorgiou, V., Kaplan, D. (2005). Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 26(27), 5474-5491. https://doi.org/10.1016/j.biomaterials.2005.02.002 PMid:15860204

Križan, P., Matúš, M., Beniak, J. (2016). Relationship between compacting pressure and conditions in pressing chamber during biomass pressing. Acta Polytech. 56 (1), 33-40. https://doi.org/10.14311/APP.2016.56.0033

Kunchala, P., Kappagantula, K. (2018). 3D printing high density ceramics using binder jetting with nanoparticle densifiers. Mater. Design 155, 443-450. https://doi.org/10.1016/j.matdes.2018.06.009

Lemoisson, F., Froyen, L. (2005). Understanding and improving powder metallurgical processes. In Fundamentals of Metallurgy. Woodhead Publishing Series, pp. 471-502. https://doi.org/10.1533/9781845690946.2.471

Mahundla, M.R., Matizamhuka, W.R., Shongwe, M.B. (2021). The effect of densification on hardness of Ti, Ti-6Al-4V, Ti-34Nb-25Zr alloy produced by spark plasma sintering. Mater. Today 38 (Part 2), 605-608. https://doi.org/10.1016/j.matpr.2020.03.468

Miyanaji, H., Momenzadeh, N., Yang, L. (2019). Effect of powder characteristics on parts fabricated via binder jetting process. Rapid Prototyping Journal 25 (2), 332-342. https://doi.org/10.1108/RPJ-03-2018-0069

Mostafaei, A., Stevens. E.L., Hughes, E., Biery, Sh., Hilla, C., Chmielus, M. (2016). Powder bed binder jet printed alloy 625: Densification, microstructure and mechanical properties. Mater. Design 108, 126-135. https://doi.org/10.1016/j.matdes.2016.06.067

Mostafaei, A., Toman, J., Stevens, E.L., Hughes, E.T., Krimer, Y.L., Chmielus, M. (2017). Microstructural evolution and mechanical properties of differently heat-treated binder jet printed samples from gas- and water-atomized alloy 625 powders. Acta Mater. 124, 280-289. https://doi.org/10.1016/j.actamat.2016.11.021

Ryan, G.E., Pandit, A.S., Apatsidis, D.P. (2008). Porous titanium scaffolds fabricated using a rapid prototyping and powder metallurgy technique. Biomaterials 29 (27), 3625-3635. https://doi.org/10.1016/j.biomaterials.2008.05.032 PMid:18556060

Shahedi Asl, M., Namini, A.S., Motallebzadeh, A., Azadbeh, M. (2018). Effects of sintering temperature on microstructure and mechanical properties of spark plasma sintered titanium. Mater- Chem. Phys. 203, 266-273. https://doi.org/10.1016/j.matchemphys.2017.09.069

Sheydaeian, E., Toyserkani, E. (2018). Additive manufacturing functionally graded titanium structures with selective closed cell layout and controlled morphology. Int. J. Adv. Manuf. Technol. 96 (9-12), 3459-3469. https://doi.org/10.1007/s00170-018-1815-2

Sidambe, A.T. (2014). Biocompatibility of advanced manufactured titanium implants-A review. Materials 7 (12), 8168-8188. https://doi.org/10.3390/ma7128168 PMid:28788296 PMCid:PMC5456424

Stevens, E., Scholder, S., Bono, E., Schmidt, D., Chmielus, M. (2018). Density variation in binder jetting 3D-printed and sintered Ti-6Al-4V. Addit. Manuf. 22, 746-752. https://doi.org/10.1016/j.addma.2018.06.017

Tojal, C., Amigó, V., Calero, J.A. (2013). Fabricación y caracterización de aleaciones porosas de Ti y Ti6Al4V producidas mediante sinterización con espaciador. Rev. Metal. 49 (1), 20-30. https://doi.org/10.3989/revmetalm.1206

Torres-Sanchez, C., Al Mushref, F.R.A., Norrito, M., Yendall, K., Liu, Y., Conway, P. (2017). The effect of pore size and porosity on mechanical properties and biological response of porous titanium scaffolds. Mater. Sci. Eng. C 77, 219-228. https://doi.org/10.1016/j.msec.2017.03.249 PMid:28532024

Tran, T.Q., Chinnappan, A., Yoong Lee, J.K., Loc, N.H., Tran, L.T., Wang, G., Kumar, V., Jayathilaka, W., Ji, D., Doddami, M., Ramarkrishna, S. (2019). 3D printing of highly pure copper. Metals 9 (7), 12-20. https://doi.org/10.3390/met9070756

Veljović, Dj., Jančić-Hajneman, R., Balać, I., Jokić, B., Putić, S., Petrović, R., Janaćković, Dj. (2011). The effect of the shape and size of the pores on the mechanical properties of porous HAP-based bioceramics. Ceramics International 37 (2), 471-479. https://doi.org/10.1016/j.ceramint.2010.09.014

Wiria, F.E., Mian Shyan, J., Lim, P.N., Chung, F., Yeo, J.F., Cao, T. (2010). Printing of Titanium implant prototype. Mater Design 31(Suppl. 1), 101-105. https://doi.org/10.1016/j.matdes.2009.12.050

Xiong, Y., Qian, C., Sun, J. (2012). Fabrication of porous titanium implants by three-dimensional printing and sintering at different temperatures. Dent. Mater. J. 31 (5), 815-820. https://doi.org/10.4012/dmj.2012-065 PMid:23037845

Yadav, P., Bock, T., Fu, Z., Lorenz, H., Gotman, I., Greil, P., Travitzky, N. (2019). Novel Hybrid Printing of Porous TiC/Ti6Al4V Composites. Adv. Eng. Mater. 1900336, 4-11. https://doi.org/10.1002/adem.201900336

Yan, L., Wu, J., Zhang, L., Liu, X., Zhou, K., Su, B. (2017). Pore structures and mechanical properties of porous titanium scaffolds by bidirectional freeze casting. Mater. Sci. Eng. C 75, 335-340. https://doi.org/10.1016/j.msec.2016.12.044 PMid:28415469

Yang, G., Xu, B., Lei, X., Wan, H., Yang, B., Liu, D., Wang, Z. (2018). Preparation of porous titanium by direct in-situ reduction of titanium sesquioxide. Vacuum 157, 453-457. https://doi.org/10.1016/j.vacuum.2018.09.021

Yegyan Kumar, A., Wang, J., Bai, Y., Huxtable, S.T., Willams, C.B. (2019). Impacts of process-induced porosity on material properties of copper made by binder jetting additive manufacturing. Mater. Design 182, 108001. https://doi.org/10.1016/j.matdes.2019.108001

Yılmaz, E., Gökçe, A., Findik, F., Gulsoy, H.O., Iyibilgin, O. (2018). Mechanical properties and electrochemical behavior of porous Ti-Nb biomaterials. J. Mech. Behav. Biomed. Mater 87, 59-67. https://doi.org/10.1016/j.jmbbm.2018.07.018 PMid:30041140

Zadra, M., Casari, F., Girardini, L, Molinari, A. (2008). Microstructure and mechanical properties of cp-titanium produced by spark plasma sintering. Powder Metall. 51 (1), 59-65. https://doi.org/10.1179/174329008X277000

Zhao, D., Han, C., Li, Y., Li, J., Zhou, K., Wei, Q, Liu, J., Shi, Y. (2019). Improvement on mechanical properties and corrosion resistance of titanium-tantalum alloys in-situ fabricated via selective laser melting. J. Alloys Compd. 804, 288-298. https://doi.org/10.1016/j.jallcom.2019.06.307

Ziaee, M., Crane, N.B. (2019). Binder jetting: A review of process, materials, and methods. Additive Manufacturing 28, 781-801. https://doi.org/10.1016/j.addma.2019.05.031

Published

2021-12-30

How to Cite

İyibilgin, O., & Gepek, E. (2021). Characterization of CP-Titanium produced via binder jetting and conventional powder metallurgy. Revista De Metalurgia, 57(4), e205. https://doi.org/10.3989/revmetalm.205

Issue

Section

Articles