Caracterización de CP-Titanio producido mediante inyección aglutinante y pulvimetalurgia convencional

Autores/as

  • Osman İyibilgin Sakarya University, Mechanical Engineering Department. Biomaterials, Energy, Photocatalysis, Enzyme Technology, Nano and Advanced Materials, Additive Manufacturing, Environmental Applications and Sustainability Research and Development Group (BIOENAMS) Sakarya University, Sakarya 54187 https://orcid.org/0000-0002-1288-1920
  • Engin Gepek Sakarya University, Mechanical Engineering Department. Turkish German University, Mechanical Engineering Department, İstanbul-Turkey. Biomedical, Magnetic and Semiconductor Materials Application & Research Center (BIMAS-RC), Sakarya University, Sakarya 54187 https://orcid.org/0000-0001-7340-8363

DOI:

https://doi.org/10.3989/revmetalm.205

Palabras clave:

Biomateriales, Fabricación aditiva, Inyección aglutinante, Pulvimetalurgia, Titanio poroso

Resumen


El titanio (Ti) y sus aleaciones se encuentran entre los materiales más utilizados en aplicaciones biomédicas. Además de ser biocompatibles, estos materiales tienen una baja densidad, una alta resistencia a la corrosión y unas propiedades mecánicas notables. Es muy difícil producir piezas con geometría compleja utilizando métodos convencionales de pulvimetalurgia (PM) ya que este método se basa en dar forma a polvos bajo fuerzas uniaxiales utilizando moldes. La Inyección Aglutinante (Binder Jetting) es un tipo de técnica de fabricación aditiva que no necesita moldes para dar forma a los polvos. Este estudio se centra en comparar las propiedades de las piezas porosas de CP-Ti producidas con PM e Inyección Aglutinante. Las piezas se sinterizaron durante 120 min en una atmósfera de argón a 1200 °C. Después de la sinterización, se alcanzaron valores de densidad relativa de aproximadamente el 94% y el 92% en las muestras producidas por PM y con la impresora 3D, respectivamente. También se observó que la muestra producida con una presión de compactación de 25 MPa tiene una dureza de 317 ± 10 HV0.05 y un límite elástico bajo compresión de 928 MPa, mientras que la pieza producida con la impresora 3D tiene una dureza de 238 ± 8 HV0. 05 y un límite elástico bajo compresión de 342 MPa. Aunque la dureza y resistencia de las muestras producidas con la impresora 3D fueron menores que las de PM, sus propiedades son adecuadas para producir implantes que reemplacen las estructuras óseas.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Amidon, G.E., Meyer, P.J., Mudie, D.M. (2017). Particle, powder, and compact characterization. In Developing Solid Oral Dosage Forms: Pharmaceutical Theory and Practice. Chapter 10, Second Edition. Elsevier Inc., pp. 271-293. https://doi.org/10.1016/B978-0-12-802447-8.00010-8

Attar, H., Löber, L., Funk, A., Calin, M., Zhang, L.C., Prashanth, K.G., Scudino, S., Zhang, Y., Eckert, J. (2015). Mechanical behavior of porous commercially pure Ti and Ti-TiB composite materials manufactured by selective laser melting. Mater. Sci. Eng. A 625, 350-356. https://doi.org/10.1016/j.msea.2014.12.036

Avila, J.D., Bose, S., Bandyopadhyay, A. (2018). Additive manufacturing of titanium and titanium alloys for biomedical applications. In Titanium in Medical and Dental Applications. Elsevier Inc., pp. 325-343. https://doi.org/10.1016/B978-0-12-812456-7.00015-9

Bai, Y., Williams, C.B. (2018). The effect of inkjetted nanoparticles on metal part properties in binder jetting additive manufacturing. Nanotechnology 29 (39), 395706. https://doi.org/10.1088/1361-6528/aad0bb PMid:29968575

Balbinotti, P., Gemelli, E., Buerger, G., Amin de Lima, S., De Jesus, J., Almeida, N.H., Rodrigues Enriques, V.A., Almeida Soares, G. (2011). Microstructure development on sintered Ti/HA biocomposites produced by powder metallurgy. Mat. Res. 14 (3), 384-393. https://doi.org/10.1590/S1516-14392011005000044

Castillo, S.M., Muñoz, S., Trueba, P., Díaz, E., Torres, Y. (2019). Influence of the Compaction Pressure and Sintering Temperature on the Mechanical Properties of Porous Titanium for Biomedical Applications. Metals 9 (12), 1249. https://doi.org/10.3390/met9121249

Chen, Q., Thouas, G.A. (2015). Metallic implant biomaterials. Mater. Sci. Eng. R 87, 1-57. https://doi.org/10.1016/j.mser.2014.10.001

Cuesta, I.I., Martínez-Pañeda, E., Díaz, A., Alegre, J.M. (2019). Cold isostatic pressing to improve the mechanical performance of additively manufactured metallic components. Materials 12 (15), 2495. https://doi.org/10.3390/ma12152495 PMid:31390786 PMCid:PMC6695705

Domínguez-Trujillo, C., Ternero, F., Rodríguez-Ortiz, J.A., Heise, S., Boccaccini, A.R., Lebrato, J., Torres, Y. (2018). Bioactive coatings on porous titanium for biomedical applications. Surf. Coat. Tech. 349, 584-592. https://doi.org/10.1016/j.surfcoat.2018.06.037

Esteban, P.G., Bolzoni, L., Ruiz-Navas, E.M., Gordo, E. (2011). Introducción al procesado pulvimetalúrgico del titanio. Rev. Metal. 47 (2), 169-187. https://doi.org/10.3989/revmetalmadrid.0943

Francis, L.F. (2016). Powder Processes. In Materials Processing. A Unified Approach to Processing of Metals, Ceramics and Polymers. pp. 343-414. https://doi.org/10.1016/B978-0-12-385132-1.00005-7

Frost, H.M. (1994). Wolff's Law and bone's structural adaptations to mechanical usage: an overview for clinicians. Angle Orthod. 64 (3), 175-188.

Gagg, G., Ghassemieh, E., Wiria, F.E. (2013). Effects of sintering temperature on morphology and mechanical characteristics of 3D printed porous titanium used as dental implant. Mater. Sci. Eng. C 33 (7), 3858-3864. https://doi.org/10.1016/j.msec.2013.05.021 PMid:23910288

Goharian, A., Abdullah, M.R. (2017). Bioinert Metals (Stainless Steel, Titanium, Cobalt Chromium). In Trauma Plating Systems. Biomechanical, Material, Biological, and Clinical Aspects. Elsevier Inc., pp. 115-142. https://doi.org/10.1016/B978-0-12-804634-0.00007-0

Goia, T.S., Violin, K.B., Bressiani, J.C., De Almeida, A.H. (2013). Titanium and Ti-13Nb-13Zr alloy porous implants obtained by space-holder technique with addition of albumin. Key Eng. Mater. 529-530, 574-579. https://doi.org/10.4028/www.scientific.net/KEM.529-530.574

Harun, W.S.W., Manan, N.S., Kamariak, M.S.I., Sharif, S., Zulkifly, A.H., Ahmad, I., Miura, H. (2018). A review of powdered additive manufacturing techniques for Ti-6al-4v biomedical applications. Powder Technol. 331, 74-97. https://doi.org/10.1016/j.powtec.2018.03.010

Karageorgiou, V., Kaplan, D. (2005). Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 26(27), 5474-5491. https://doi.org/10.1016/j.biomaterials.2005.02.002 PMid:15860204

Križan, P., Matúš, M., Beniak, J. (2016). Relationship between compacting pressure and conditions in pressing chamber during biomass pressing. Acta Polytech. 56 (1), 33-40. https://doi.org/10.14311/APP.2016.56.0033

Kunchala, P., Kappagantula, K. (2018). 3D printing high density ceramics using binder jetting with nanoparticle densifiers. Mater. Design 155, 443-450. https://doi.org/10.1016/j.matdes.2018.06.009

Lemoisson, F., Froyen, L. (2005). Understanding and improving powder metallurgical processes. In Fundamentals of Metallurgy. Woodhead Publishing Series, pp. 471-502. https://doi.org/10.1533/9781845690946.2.471

Mahundla, M.R., Matizamhuka, W.R., Shongwe, M.B. (2021). The effect of densification on hardness of Ti, Ti-6Al-4V, Ti-34Nb-25Zr alloy produced by spark plasma sintering. Mater. Today 38 (Part 2), 605-608. https://doi.org/10.1016/j.matpr.2020.03.468

Miyanaji, H., Momenzadeh, N., Yang, L. (2019). Effect of powder characteristics on parts fabricated via binder jetting process. Rapid Prototyping Journal 25 (2), 332-342. https://doi.org/10.1108/RPJ-03-2018-0069

Mostafaei, A., Stevens. E.L., Hughes, E., Biery, Sh., Hilla, C., Chmielus, M. (2016). Powder bed binder jet printed alloy 625: Densification, microstructure and mechanical properties. Mater. Design 108, 126-135. https://doi.org/10.1016/j.matdes.2016.06.067

Mostafaei, A., Toman, J., Stevens, E.L., Hughes, E.T., Krimer, Y.L., Chmielus, M. (2017). Microstructural evolution and mechanical properties of differently heat-treated binder jet printed samples from gas- and water-atomized alloy 625 powders. Acta Mater. 124, 280-289. https://doi.org/10.1016/j.actamat.2016.11.021

Ryan, G.E., Pandit, A.S., Apatsidis, D.P. (2008). Porous titanium scaffolds fabricated using a rapid prototyping and powder metallurgy technique. Biomaterials 29 (27), 3625-3635. https://doi.org/10.1016/j.biomaterials.2008.05.032 PMid:18556060

Shahedi Asl, M., Namini, A.S., Motallebzadeh, A., Azadbeh, M. (2018). Effects of sintering temperature on microstructure and mechanical properties of spark plasma sintered titanium. Mater- Chem. Phys. 203, 266-273. https://doi.org/10.1016/j.matchemphys.2017.09.069

Sheydaeian, E., Toyserkani, E. (2018). Additive manufacturing functionally graded titanium structures with selective closed cell layout and controlled morphology. Int. J. Adv. Manuf. Technol. 96 (9-12), 3459-3469. https://doi.org/10.1007/s00170-018-1815-2

Sidambe, A.T. (2014). Biocompatibility of advanced manufactured titanium implants-A review. Materials 7 (12), 8168-8188. https://doi.org/10.3390/ma7128168 PMid:28788296 PMCid:PMC5456424

Stevens, E., Scholder, S., Bono, E., Schmidt, D., Chmielus, M. (2018). Density variation in binder jetting 3D-printed and sintered Ti-6Al-4V. Addit. Manuf. 22, 746-752. https://doi.org/10.1016/j.addma.2018.06.017

Tojal, C., Amigó, V., Calero, J.A. (2013). Fabricación y caracterización de aleaciones porosas de Ti y Ti6Al4V producidas mediante sinterización con espaciador. Rev. Metal. 49 (1), 20-30. https://doi.org/10.3989/revmetalm.1206

Torres-Sanchez, C., Al Mushref, F.R.A., Norrito, M., Yendall, K., Liu, Y., Conway, P. (2017). The effect of pore size and porosity on mechanical properties and biological response of porous titanium scaffolds. Mater. Sci. Eng. C 77, 219-228. https://doi.org/10.1016/j.msec.2017.03.249 PMid:28532024

Tran, T.Q., Chinnappan, A., Yoong Lee, J.K., Loc, N.H., Tran, L.T., Wang, G., Kumar, V., Jayathilaka, W., Ji, D., Doddami, M., Ramarkrishna, S. (2019). 3D printing of highly pure copper. Metals 9 (7), 12-20. https://doi.org/10.3390/met9070756

Veljović, Dj., Jančić-Hajneman, R., Balać, I., Jokić, B., Putić, S., Petrović, R., Janaćković, Dj. (2011). The effect of the shape and size of the pores on the mechanical properties of porous HAP-based bioceramics. Ceramics International 37 (2), 471-479. https://doi.org/10.1016/j.ceramint.2010.09.014

Wiria, F.E., Mian Shyan, J., Lim, P.N., Chung, F., Yeo, J.F., Cao, T. (2010). Printing of Titanium implant prototype. Mater Design 31(Suppl. 1), 101-105. https://doi.org/10.1016/j.matdes.2009.12.050

Xiong, Y., Qian, C., Sun, J. (2012). Fabrication of porous titanium implants by three-dimensional printing and sintering at different temperatures. Dent. Mater. J. 31 (5), 815-820. https://doi.org/10.4012/dmj.2012-065 PMid:23037845

Yadav, P., Bock, T., Fu, Z., Lorenz, H., Gotman, I., Greil, P., Travitzky, N. (2019). Novel Hybrid Printing of Porous TiC/Ti6Al4V Composites. Adv. Eng. Mater. 1900336, 4-11. https://doi.org/10.1002/adem.201900336

Yan, L., Wu, J., Zhang, L., Liu, X., Zhou, K., Su, B. (2017). Pore structures and mechanical properties of porous titanium scaffolds by bidirectional freeze casting. Mater. Sci. Eng. C 75, 335-340. https://doi.org/10.1016/j.msec.2016.12.044 PMid:28415469

Yang, G., Xu, B., Lei, X., Wan, H., Yang, B., Liu, D., Wang, Z. (2018). Preparation of porous titanium by direct in-situ reduction of titanium sesquioxide. Vacuum 157, 453-457. https://doi.org/10.1016/j.vacuum.2018.09.021

Yegyan Kumar, A., Wang, J., Bai, Y., Huxtable, S.T., Willams, C.B. (2019). Impacts of process-induced porosity on material properties of copper made by binder jetting additive manufacturing. Mater. Design 182, 108001. https://doi.org/10.1016/j.matdes.2019.108001

Yılmaz, E., Gökçe, A., Findik, F., Gulsoy, H.O., Iyibilgin, O. (2018). Mechanical properties and electrochemical behavior of porous Ti-Nb biomaterials. J. Mech. Behav. Biomed. Mater 87, 59-67. https://doi.org/10.1016/j.jmbbm.2018.07.018 PMid:30041140

Zadra, M., Casari, F., Girardini, L, Molinari, A. (2008). Microstructure and mechanical properties of cp-titanium produced by spark plasma sintering. Powder Metall. 51 (1), 59-65. https://doi.org/10.1179/174329008X277000

Zhao, D., Han, C., Li, Y., Li, J., Zhou, K., Wei, Q, Liu, J., Shi, Y. (2019). Improvement on mechanical properties and corrosion resistance of titanium-tantalum alloys in-situ fabricated via selective laser melting. J. Alloys Compd. 804, 288-298. https://doi.org/10.1016/j.jallcom.2019.06.307

Ziaee, M., Crane, N.B. (2019). Binder jetting: A review of process, materials, and methods. Additive Manufacturing 28, 781-801. https://doi.org/10.1016/j.addma.2019.05.031

Publicado

2021-12-30

Cómo citar

İyibilgin, O., & Gepek, E. (2021). Caracterización de CP-Titanio producido mediante inyección aglutinante y pulvimetalurgia convencional. Revista De Metalurgia, 57(4), e205. https://doi.org/10.3989/revmetalm.205

Número

Sección

Artículos