Characterization of CP-Titanium produced via binder jetting and conventional powder metallurgy
DOI:
https://doi.org/10.3989/revmetalm.205Keywords:
Additive manufacturing, Binder jetting, Biomaterials, Porous titanium, Powder metallurgyAbstract
Titanium (Ti) and its alloys are among the most commonly used materials in biomedical applications. In addition to being biocompatible, these materials have notable low density and high corrosion resistance and mechanical properties. It is difficult or impossible to produce parts with complex geometry using conventional powder metallurgy (PM) method since this method is based on shaping powders under uniaxial forces using molds. Binder Jetting is a kind of additive manufacturing technique that do not need molds to shape powders. This study focuses on comparing the properties of the porous CP-Ti parts produced using PM and Binder Jetting. The parts were sintered for 120 min under Argon atmosphere at 1200 °C. After sintering, approximately 94% and 92% relative density values were achieved in the specimens produced using the PM and the 3D printer, respectively. It was also observed that the sample produced using 25 MPa compacting pressure has a hardness of 317±10 HV0.05 and a compressive (yield) strength of 928 MPa while its counterpart produced using the 3D printer has a hardness of 238±8 HV0.05 and a compressive (yield) strength of 342 MPa. Although the hardness and strength of the specimens produced with the 3D printer were lower than PM ones, their properties are appropriate for producing implants to replace bone structures.
Downloads
References
Amidon, G.E., Meyer, P.J., Mudie, D.M. (2017). Particle, powder, and compact characterization. In Developing Solid Oral Dosage Forms: Pharmaceutical Theory and Practice. Chapter 10, Second Edition. Elsevier Inc., pp. 271-293. https://doi.org/10.1016/B978-0-12-802447-8.00010-8
Attar, H., Löber, L., Funk, A., Calin, M., Zhang, L.C., Prashanth, K.G., Scudino, S., Zhang, Y., Eckert, J. (2015). Mechanical behavior of porous commercially pure Ti and Ti-TiB composite materials manufactured by selective laser melting. Mater. Sci. Eng. A 625, 350-356. https://doi.org/10.1016/j.msea.2014.12.036
Avila, J.D., Bose, S., Bandyopadhyay, A. (2018). Additive manufacturing of titanium and titanium alloys for biomedical applications. In Titanium in Medical and Dental Applications. Elsevier Inc., pp. 325-343. https://doi.org/10.1016/B978-0-12-812456-7.00015-9
Bai, Y., Williams, C.B. (2018). The effect of inkjetted nanoparticles on metal part properties in binder jetting additive manufacturing. Nanotechnology 29 (39), 395706. https://doi.org/10.1088/1361-6528/aad0bb PMid:29968575
Balbinotti, P., Gemelli, E., Buerger, G., Amin de Lima, S., De Jesus, J., Almeida, N.H., Rodrigues Enriques, V.A., Almeida Soares, G. (2011). Microstructure development on sintered Ti/HA biocomposites produced by powder metallurgy. Mat. Res. 14 (3), 384-393. https://doi.org/10.1590/S1516-14392011005000044
Castillo, S.M., Muñoz, S., Trueba, P., Díaz, E., Torres, Y. (2019). Influence of the Compaction Pressure and Sintering Temperature on the Mechanical Properties of Porous Titanium for Biomedical Applications. Metals 9 (12), 1249. https://doi.org/10.3390/met9121249
Chen, Q., Thouas, G.A. (2015). Metallic implant biomaterials. Mater. Sci. Eng. R 87, 1-57. https://doi.org/10.1016/j.mser.2014.10.001
Cuesta, I.I., Martínez-Pañeda, E., Díaz, A., Alegre, J.M. (2019). Cold isostatic pressing to improve the mechanical performance of additively manufactured metallic components. Materials 12 (15), 2495. https://doi.org/10.3390/ma12152495 PMid:31390786 PMCid:PMC6695705
Domínguez-Trujillo, C., Ternero, F., Rodríguez-Ortiz, J.A., Heise, S., Boccaccini, A.R., Lebrato, J., Torres, Y. (2018). Bioactive coatings on porous titanium for biomedical applications. Surf. Coat. Tech. 349, 584-592. https://doi.org/10.1016/j.surfcoat.2018.06.037
Esteban, P.G., Bolzoni, L., Ruiz-Navas, E.M., Gordo, E. (2011). Introducción al procesado pulvimetalúrgico del titanio. Rev. Metal. 47 (2), 169-187. https://doi.org/10.3989/revmetalmadrid.0943
Francis, L.F. (2016). Powder Processes. In Materials Processing. A Unified Approach to Processing of Metals, Ceramics and Polymers. pp. 343-414. https://doi.org/10.1016/B978-0-12-385132-1.00005-7
Frost, H.M. (1994). Wolff's Law and bone's structural adaptations to mechanical usage: an overview for clinicians. Angle Orthod. 64 (3), 175-188.
Gagg, G., Ghassemieh, E., Wiria, F.E. (2013). Effects of sintering temperature on morphology and mechanical characteristics of 3D printed porous titanium used as dental implant. Mater. Sci. Eng. C 33 (7), 3858-3864. https://doi.org/10.1016/j.msec.2013.05.021 PMid:23910288
Goharian, A., Abdullah, M.R. (2017). Bioinert Metals (Stainless Steel, Titanium, Cobalt Chromium). In Trauma Plating Systems. Biomechanical, Material, Biological, and Clinical Aspects. Elsevier Inc., pp. 115-142. https://doi.org/10.1016/B978-0-12-804634-0.00007-0
Goia, T.S., Violin, K.B., Bressiani, J.C., De Almeida, A.H. (2013). Titanium and Ti-13Nb-13Zr alloy porous implants obtained by space-holder technique with addition of albumin. Key Eng. Mater. 529-530, 574-579. https://doi.org/10.4028/www.scientific.net/KEM.529-530.574
Harun, W.S.W., Manan, N.S., Kamariak, M.S.I., Sharif, S., Zulkifly, A.H., Ahmad, I., Miura, H. (2018). A review of powdered additive manufacturing techniques for Ti-6al-4v biomedical applications. Powder Technol. 331, 74-97. https://doi.org/10.1016/j.powtec.2018.03.010
Karageorgiou, V., Kaplan, D. (2005). Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 26(27), 5474-5491. https://doi.org/10.1016/j.biomaterials.2005.02.002 PMid:15860204
Križan, P., Matúš, M., Beniak, J. (2016). Relationship between compacting pressure and conditions in pressing chamber during biomass pressing. Acta Polytech. 56 (1), 33-40. https://doi.org/10.14311/APP.2016.56.0033
Kunchala, P., Kappagantula, K. (2018). 3D printing high density ceramics using binder jetting with nanoparticle densifiers. Mater. Design 155, 443-450. https://doi.org/10.1016/j.matdes.2018.06.009
Lemoisson, F., Froyen, L. (2005). Understanding and improving powder metallurgical processes. In Fundamentals of Metallurgy. Woodhead Publishing Series, pp. 471-502. https://doi.org/10.1533/9781845690946.2.471
Mahundla, M.R., Matizamhuka, W.R., Shongwe, M.B. (2021). The effect of densification on hardness of Ti, Ti-6Al-4V, Ti-34Nb-25Zr alloy produced by spark plasma sintering. Mater. Today 38 (Part 2), 605-608. https://doi.org/10.1016/j.matpr.2020.03.468
Miyanaji, H., Momenzadeh, N., Yang, L. (2019). Effect of powder characteristics on parts fabricated via binder jetting process. Rapid Prototyping Journal 25 (2), 332-342. https://doi.org/10.1108/RPJ-03-2018-0069
Mostafaei, A., Stevens. E.L., Hughes, E., Biery, Sh., Hilla, C., Chmielus, M. (2016). Powder bed binder jet printed alloy 625: Densification, microstructure and mechanical properties. Mater. Design 108, 126-135. https://doi.org/10.1016/j.matdes.2016.06.067
Mostafaei, A., Toman, J., Stevens, E.L., Hughes, E.T., Krimer, Y.L., Chmielus, M. (2017). Microstructural evolution and mechanical properties of differently heat-treated binder jet printed samples from gas- and water-atomized alloy 625 powders. Acta Mater. 124, 280-289. https://doi.org/10.1016/j.actamat.2016.11.021
Ryan, G.E., Pandit, A.S., Apatsidis, D.P. (2008). Porous titanium scaffolds fabricated using a rapid prototyping and powder metallurgy technique. Biomaterials 29 (27), 3625-3635. https://doi.org/10.1016/j.biomaterials.2008.05.032 PMid:18556060
Shahedi Asl, M., Namini, A.S., Motallebzadeh, A., Azadbeh, M. (2018). Effects of sintering temperature on microstructure and mechanical properties of spark plasma sintered titanium. Mater- Chem. Phys. 203, 266-273. https://doi.org/10.1016/j.matchemphys.2017.09.069
Sheydaeian, E., Toyserkani, E. (2018). Additive manufacturing functionally graded titanium structures with selective closed cell layout and controlled morphology. Int. J. Adv. Manuf. Technol. 96 (9-12), 3459-3469. https://doi.org/10.1007/s00170-018-1815-2
Sidambe, A.T. (2014). Biocompatibility of advanced manufactured titanium implants-A review. Materials 7 (12), 8168-8188. https://doi.org/10.3390/ma7128168 PMid:28788296 PMCid:PMC5456424
Stevens, E., Scholder, S., Bono, E., Schmidt, D., Chmielus, M. (2018). Density variation in binder jetting 3D-printed and sintered Ti-6Al-4V. Addit. Manuf. 22, 746-752. https://doi.org/10.1016/j.addma.2018.06.017
Tojal, C., Amigó, V., Calero, J.A. (2013). Fabricación y caracterización de aleaciones porosas de Ti y Ti6Al4V producidas mediante sinterización con espaciador. Rev. Metal. 49 (1), 20-30. https://doi.org/10.3989/revmetalm.1206
Torres-Sanchez, C., Al Mushref, F.R.A., Norrito, M., Yendall, K., Liu, Y., Conway, P. (2017). The effect of pore size and porosity on mechanical properties and biological response of porous titanium scaffolds. Mater. Sci. Eng. C 77, 219-228. https://doi.org/10.1016/j.msec.2017.03.249 PMid:28532024
Tran, T.Q., Chinnappan, A., Yoong Lee, J.K., Loc, N.H., Tran, L.T., Wang, G., Kumar, V., Jayathilaka, W., Ji, D., Doddami, M., Ramarkrishna, S. (2019). 3D printing of highly pure copper. Metals 9 (7), 12-20. https://doi.org/10.3390/met9070756
Veljović, Dj., Jančić-Hajneman, R., Balać, I., Jokić, B., Putić, S., Petrović, R., Janaćković, Dj. (2011). The effect of the shape and size of the pores on the mechanical properties of porous HAP-based bioceramics. Ceramics International 37 (2), 471-479. https://doi.org/10.1016/j.ceramint.2010.09.014
Wiria, F.E., Mian Shyan, J., Lim, P.N., Chung, F., Yeo, J.F., Cao, T. (2010). Printing of Titanium implant prototype. Mater Design 31(Suppl. 1), 101-105. https://doi.org/10.1016/j.matdes.2009.12.050
Xiong, Y., Qian, C., Sun, J. (2012). Fabrication of porous titanium implants by three-dimensional printing and sintering at different temperatures. Dent. Mater. J. 31 (5), 815-820. https://doi.org/10.4012/dmj.2012-065 PMid:23037845
Yadav, P., Bock, T., Fu, Z., Lorenz, H., Gotman, I., Greil, P., Travitzky, N. (2019). Novel Hybrid Printing of Porous TiC/Ti6Al4V Composites. Adv. Eng. Mater. 1900336, 4-11. https://doi.org/10.1002/adem.201900336
Yan, L., Wu, J., Zhang, L., Liu, X., Zhou, K., Su, B. (2017). Pore structures and mechanical properties of porous titanium scaffolds by bidirectional freeze casting. Mater. Sci. Eng. C 75, 335-340. https://doi.org/10.1016/j.msec.2016.12.044 PMid:28415469
Yang, G., Xu, B., Lei, X., Wan, H., Yang, B., Liu, D., Wang, Z. (2018). Preparation of porous titanium by direct in-situ reduction of titanium sesquioxide. Vacuum 157, 453-457. https://doi.org/10.1016/j.vacuum.2018.09.021
Yegyan Kumar, A., Wang, J., Bai, Y., Huxtable, S.T., Willams, C.B. (2019). Impacts of process-induced porosity on material properties of copper made by binder jetting additive manufacturing. Mater. Design 182, 108001. https://doi.org/10.1016/j.matdes.2019.108001
Yılmaz, E., Gökçe, A., Findik, F., Gulsoy, H.O., Iyibilgin, O. (2018). Mechanical properties and electrochemical behavior of porous Ti-Nb biomaterials. J. Mech. Behav. Biomed. Mater 87, 59-67. https://doi.org/10.1016/j.jmbbm.2018.07.018 PMid:30041140
Zadra, M., Casari, F., Girardini, L, Molinari, A. (2008). Microstructure and mechanical properties of cp-titanium produced by spark plasma sintering. Powder Metall. 51 (1), 59-65. https://doi.org/10.1179/174329008X277000
Zhao, D., Han, C., Li, Y., Li, J., Zhou, K., Wei, Q, Liu, J., Shi, Y. (2019). Improvement on mechanical properties and corrosion resistance of titanium-tantalum alloys in-situ fabricated via selective laser melting. J. Alloys Compd. 804, 288-298. https://doi.org/10.1016/j.jallcom.2019.06.307
Ziaee, M., Crane, N.B. (2019). Binder jetting: A review of process, materials, and methods. Additive Manufacturing 28, 781-801. https://doi.org/10.1016/j.addma.2019.05.031
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the printed and online versions of this Journal are the property of Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.All contents of this electronic edition, except where otherwise noted, are distributed under a “Creative Commons Attribution 4.0 International” (CC BY 4.0) License. You may read here the basic information and the legal text of the license. The indication of the CC BY 4.0 License must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the published by the Editor, is not allowed.