Arsenic removal by using colloidal adsorption flotation utilizing Fe(OH)3 floc in a dissolved air flotation system


  • O. Pavez Departamento de Metalurgia, Universidad de Atacama
  • J. M. Palacios Departamento de Metalurgia, Universidad de Atacama
  • C. Aguilar Facultad de Ciencias de la Ingeniería, Universidad Austral de Chile



Arsenic, Removal, Dissolved air flotation, Fe/As ratio


In the present work, the influence of Fe/As ratio on the As removal, from aqueous solutions, applying flotation by colloidal adsorption was studied. Ferric chloride was used as coagulant and dodecil sulfate as collector, and arsenic trioxide was utilized to preparing the solutions. The obtained results show that the highest arsenic removal was accomplished in the range of pH between 4 and 5,5, and the increasing of the initial concentration of Fe(III), increases the removal of arsenic from the solution. However, with the decreasing of the initial concentration of arsenic in the solution, it is required a larger Fe/As ratio for its removal. For solutions containing: 13,73, 1,71 and 0,105 mg/L of arsenic, it was shown that to remove around 95% of the dissolved arsenic, a Fe/As ratios of approximately 6/1, 18/1 and 800/1, respectively, are required.


Download data is not yet available.


[1] F. Pérez-Moreno, F. Prieto-García, A. Rojas-Hernández, Y. Marmolejo- Santillán, E. Salinas- Rodríguez y F. Patiño-Cardona, Rev. Metal. Madrid. 42 (2006) 391-395.

[2] S. Yamamura, Global concern on the arsenic problem in drinking water and current response, Int. Sem. Latin American Experience in Environ mental Management, 2000, CENMA, Chile, 1-9.

[3] T. Yoshida, H. Yamauchi y G. Fan Sun, Toxicol. Appl Pharm. 198 (2004) 243-252. doi:10.1016/j.taap.2003.10.022 PMid:15276403

[4] R.R. Walvekar, S.V. Kane, M.S. Nadkarni, I.N. Bagwan, D.A. Chaukar y A.K.D. D” Cruz, J. Cutan. Pathol 34 (2006) 203-206. doi:10.1111/j.1600-0560.2006.00596.x PMid:17244035

[5] E. Kociolet-Balawejder y D. Ocinski, Przemysl Chemiczny 85 (2006) 19-26.

[6] A.H. Mirza, and V. Ramachandran, Removal of arsenic and selenium from wastewaters – A review. Second Int. Symp Extraction and Processing for the Treatment and Minimization of Wastes (Edited by Ramachandran, V. and Nesbitt, C.C.), The Minerals, Metals & Materials Society, 1996, p. 563.

[7] V.N. Tien, D.S. Chaudhary, H.H. Ngo y S. Vig - nes waran, J. Ind. Eng. Chem. 10 (2004) 337-348.

[8] L. Dambies, Sep. Sci. Technol. 39 (2004) 603- 627. doi:10.1081/SS-120027997

[9] O.M. Vatutsina, V.S. Soldatov, V.I. Sokolova, J. Johann, M. Bissen y A. Weissenbacher, React. Funct. Polym. 67 (2007) 184-201. doi:10.1016/j.reactfunctpolym.2006.10.009

[10] B. Nayak, M.A. Hossain, M.K. Sengupta, S.Ahamed, B. Das, A. Pal y A. Mukherjee, Water. Qual Res. J. Can. 41 (2006) 333-340.

[11] V.K. Gupta, V.K. Saini y N. Jain, J. Colloid Interf. Sci. 288 (2005) 55-60. doi:10.1016/j.jcis.2005.02.054 PMid:15927561

[12] H. Garelick, A. Dybowska, E. Valsami-Jones y N.D. Priest, J.Soils Sediments 5 (2005) 182-190. doi:10.1065/jss2005.06.140

[13] P. Westerhoff, D. Highfield, M. Badruzzaman y Y. Yoon, J. Environ. Eng. Asce 131 (2005) 262- 271. doi:10.1061/(ASCE)0733-9372(2005)131:2(262)

[14] S.R. Wickramasinghe, H. Binbing, J. Zimbron, Z. Shen y M.N. Karim, Desalination 169 (2004) 231-244.

[15] J. Iqbal, H.J. Kim. J.S. Yang, K. Baek y J.W. Yang, Chemosphere 66 (2007) 970-976. doi:10.1016/j.chemosphere.2006.06.005 PMid:16884764

[16] M.P. Elizalde-González, W.D. Mattusch, D. Einicke y R. Wennrich, Chem. Eng. J. 81 (2001) 187-195. doi:10.1016/S1385-8947(00)00201-1

[17] S. Shevade y R.G. Ford, Water Res. 38 (2004) 3.197-3.204.

[18] S. Nakashima, Analyst 103 (1978) 1031-1036. doi:10.1039/an9780301031

[19] E.H. De Carlo y H. Zeitlin, Anal. Chem., 53 (1981) 1.104-1.107.

[20] X. Feng y D.E. Ryan, Anal. Chem. Acta 162 (1984) 47-55. doi:10.1016/S0003-2670(00)84226-9

[21] E.H. De Carlo y D.M. Thomas, Environ. Sci. Technol. 19 (1985) 538-544. doi:10.1021/es00136a009

[22] X. Xiaoyuan, C. Jin y G. Changhuai, XVII th Int. Mineral Processing Congress, Dresden, 1991, p. 419-427.

[23] F.F. Peng y P. Di, Ind. Eng. Chem. Res. 33 (1994) 922-928. doi:10.1021/ie00028a020

[24] Y. Zhao, A.I. Zouboulis y K.A. Matis. Sep. Sci. Technol. 31 (1996) 769-785. doi:10.1080/01496399608001323

[25] G.B. Harris, S. Monette, The estability of arsenic – bearing residues. In: Arsenic Metallurgy – Fundamentals and Applications, eds. R.G. Reddy, J.L. Hendrix y P.B. Quenau, The Metallurgical Society of AIME, Warrendale, Pennsylvania, 1988, p. 469.

[26] N. Papassiopi, M. Stefanakis y A. Kontopoulos, Removal of arsenic from solutions by precipitation as ferric arsenates. In Arsenic Metallurgy – Fundamentals and Applications, eds. R.G. Reddy, J.L. Hendrix, y P.B. Quenau. The Metallurgical Society of AIME, Warrendale, Pennsylvania, 1988, p. 321.

[27] E. Krause y V.A. Ettel, Hydrometallurgy 22 (1989) 311-337. doi:10.1016/0304-386X(89)90028-5

[28] J. Nanor, M. Misra, S. Chen, Characterization of iron – arsenate and lanthanum – arsenate precipitated compounds. In Analytical Technology in the Mineral Industries, eds. Cabri, J.L., Buckman, C.H., Milosavljevic, E.B., Chryssoulis, S.L. and Miller, R.A., The Minerals, Metals & Materials Society, 1999, p. 95.

[29] G.A. Parks, Chem. Rev. 65 (1965) 177-198. doi:10.1021/cr60234a002

[30] G.A. Parks, Adsorption in the marine environment, Chemical Oceanography, eds. J.P. Riley and G. Skirrow, Academic Press, 2nd edition, 1975, chapter 4, p. 241.

[31] T.E. Chatmann, S.D. Huang and D.J. Wilson, J. Sep. Sci. 12 (1977) 461-484. doi:10.1080/00372367708058090




How to Cite

Pavez, O., Palacios, J. M., & Aguilar, C. (2009). Arsenic removal by using colloidal adsorption flotation utilizing Fe(OH)3 floc in a dissolved air flotation system. Revista De Metalurgia, 45(2), 85–91.