The removal of toxic metals from liquid effluents by ion exchange resins. Part XVII: Arsenic(V)/H+/Dowex 1x8

Authors

DOI:

https://doi.org/10.3989/revmetalm.221

Keywords:

Arsenic(V), Dowex 1x8, Liquid effluents, Multiwalled carbon nanotubes, Removal

Abstract


The performance of anionic exchange resin Dowex 1x8 in the removal of arsenic(V) from aqueous solutions was investigated. Batch experimentation was carried out under different variables, including, the stirring speed applied on the system, the pH of the aqueous solution, resin dosage and temperature. Due to the characteristic speciation of arsenic(V) in aqueous phases, the removal of this element from the solution is negligible at highly acidic or alkaline pH values, but it is possible at the aqueous pH range of 4-9, thus, both HAsO42- and H2AsO4- species are loaded onto the resin. At the above pH range, arsenic(V) uptake is exothermic. Different models are fitted to the experimental values in order to gain knowledge about this ion exchange system: rate law, kinetics and solute loading onto the resin. This loading is compared against the yielded using non-functionalized multiwalled carbon nanotubes. The elution step is investigated using acidic solutions (HCl medium) as eluent, from the eluted solutions, arsenic(V) can be efficiently stabilized as ferric or calcium arsenates.

Downloads

Download data is not yet available.

References

Alguacil, F.J., Coedo, A.G., Dorado, T., Padilla, I. (2002a). The removal of toxic metals from liquid effluents by ion exchange resins. Part I: chromium(VI)/sulphate/Dowex 1x8. Rev. Metal. 38 (4), 306-311. https://doi.org/10.3989/revmetalm.2002.v38.i4.412

Alguacil, F.J. (2002b). The removal of toxic metals from liquid effluents by ion exchange resins. Part II: cadmium(II)/sulphate/Lewatit TP260. Rev. Metal. 38 (5), 348-352. https://doi.org/10.3989/revmetalm.2002.v38.i5.418

Alguacil, F.J. (2003). The removal of toxic metals from liquid effluents by ion exchange resins. Part III: copper(II)/sulphate/Amberlite 200. Rev. Metal. 39 (3), 205-209. https://doi.org/10.3989/revmetalm.2003.v39.i3.330

Alguacil, F.J., Lopez, F.A., Rodriguez, O., Martinez-Ramirez, S., Garcia-Diaz, I. (2016). Sorption of indium (III) onto carbon nanotubes. Ecotoxicol. Environ. Saf. 130, 81-86. https://doi.org/10.1016/j.ecoenv.2016.04.008 PMid:27085001

Alguacil, F.J. (2017a). The removal of toxic metals from liquid effluents by ion exchange resins. Part IV: chromium(III)/H+/Lewatit SP112. Rev. Metal. 53 (2), e093.

Alguacil, F.J. (2017b). The removal of toxic metals from liquid effluents by ion exchange resins. Part V: nickel(II)/H+/Dowex C400. Rev. Metal. 53 (4), e105.

Alguacil, F.J. (2018a). The removal of toxic metals from liquid effluents by ion exchange resins. Part VI: manganese(II)/H+/Lewatit K2621. Rev. Metal. 54 (2), e116.

Alguacil, F.J. (2018b). The removal of toxic metals from liquid effluents by ion exchange resins. Part VII: manganese(VII)/H+/Amberlite 958. Rev. Metal. 54 (3), e125.

Alguacil, F.J., Escudero, E. (2018). The removal of toxic metals from liquid effluents by ion exchange resins. Part VIII: arsenic(III)/OH/Dowex 1x8. Rev. Metal. 54 (4), e132. https://doi.org/10.3989/revmetalm.132

Alguacil, F.J. (2019a). The removal of toxic metals from liquid effluents by ion exchange resins. Part IX: lead(II)/H+/Amberlite IR120. Rev. Metal. 55 (1), e138.

Alguacil, F.J. (2019b). The removal of toxic metals from liquid effluents by ion exchange resins. Part X: antimony(III)/H+/Ionac SR7. Rev. Metal. 55 (3), e152.

Alguacil, F.J. (2019c). The removal of toxic metals from liquid effluents by ion exchange resins. Part XI: cobalt(II)/H+/Lewatit TP260. Rev. Metal. 55 (4), e154.

Alguacil, F.J., Escudero, E. (2020). The removal of toxic metals from liquid effluents by ion exchange resins. Part XII: mercury(II)/H+/Lewatit SP112. Rev. Metal. 56 (1), e160.

Alguacil, F.J. (2020a). The removal of toxic metals from liquid effluents by ion exchange resins. Part XIII: zinc(II)/H+/ Lewatit OC-1026. Rev. Metal. 56 (3), e172.

Alguacil, F.J. (2020b). The removal of toxic metals from liquid effluents by ion exchange resins. Part XIV: indium(III)/H+/Dowex-400. Rev. Metal. 56 (4), e184. https://doi.org/10.3989/revmetalm.184

Alguacil, F.J. (2021a). The removal of toxic metals from liquid effluents by ion exchange resins. Part XV: iron(II)/H+/Lewatit TP208. Rev. Metal. 57 (1), e190. https://doi.org/10.3989/revmetalm.190

Alguacil, F.J. (2021b). The removal of toxic metals from liquid effluents by ion exchange resins. Part XVI: iron(III)/H+/Lewatit TP208. Rev. Metal. 57 (3), e203. https://doi.org/10.3989/revmetalm.203

Alka, S., Shahir, S., Ibrahim, N., Ndejiko, M.J., Vo, D.-V.N., Manan, F.A. (2021). Arsenic removal technologies and future trends: A mini review. J. Clean. Prod. 278, 123805. https://doi.org/10.1016/j.jclepro.2020.123805

Ayawei, N., Ebelegi, A.N., Wankasi, D. (2017). Modelling and interpretation of adsorption isotherms. J. Chem. 2017, 3039817. https://doi.org/10.1155/2017/3039817

Dadakhanov, J., Marinova, A., Baimukhanova, A., Karaivanov, D., Temerbulatova, N., Kozempel, J., Roesch, F., Filosofov, D. (2021). Sorption of various elements on ion-exchange resins in acetic media. J. Radioanal. Nucl. Chem. 327, 1191-1199. https://doi.org/10.1007/s10967-021-07600-7

Deng, Z., Fang, Z., Liu, A., Xu, N., Zhang, X. (2021). From laboratory to large-scale manufacture of anion exchange resin-supported nano-hydrated zirconium oxide for As(V) removal from water solutions. Sci. Total Environ. 777, 146103. https://doi.org/10.1016/j.scitotenv.2021.146103

De Klerk, R.J., Feldmann, T., Daenzer, R., Demopoulos, G.P. (2015). Continuous circuit coprecipitation of arsenic(V) with ferric iron by lime neutralization: The effect of circuit staging, co-ions and equilibration pH on long-term arsenic retention. Hydrometallurgy 151, 42-50. https://doi.org/10.1016/j.hydromet.2014.11.003

Doerfelt, C., Feldmann, T., Roy, R., Demopoulos, G.P. (2016). Stability of arsenate-bearing Fe(III)/Al(III) co-precipitates in the presence of sulfide as reducing agent under anoxic conditions. Chemosphere 151, 318-323. https://doi.org/10.1016/j.chemosphere.2016.02.087 PMid:26950022

Elbadawy, H.A. (2019). Adsorption and structural study of the chelating resin, 1,8-(3,6-dithiaoctyl)-4-polyvinyl benzenesulphonate (dpvbs) performance towards aqueous Hg(II). J. Molec. Liq. 277, 584-593. https://doi.org/10.1016/j.molliq.2018.12.134

Gao, S., Wang, Q., Nie, J., Poon, C.S., Yin, H., Li, J.-S. (2021). Arsenate(V) removal from aqueous system by using modified incinerated sewage sludge ash (ISSA) as a novel adsorbent. Chemosphere 270, 129423. https://doi.org/10.1016/j.chemosphere.2020.129423 PMid:33401069

Islam, A., Teo, S.H., Ahmed, M.T., Khandaker, S., Ibrahim, M.L., Vo, D.-V.N., Abdulkreem-Alsultan, G., Khan, A.S. (2021). Novel micro-structured carbon-based adsorbents for notorious arsenic removal from wastewater. Chemosphere 272, 129653. https://doi.org/10.1016/j.chemosphere.2021.129653 PMid:33486455

Jamali, M., Akbari, A. (2021). Facile fabrication of magnetic chitosan hydrogel beads and modified by interfacial polymerization method and study of adsorption of cationic/anionic dyes from aqueous solution. J. Environ. Chem. Eng. 9 (3), 105175. https://doi.org/10.1016/j.jece.2021.105175

Jarma, Y.A., Karaoğlu, A., Tekin, Ö., Baba, A., Ökten, H.E., Tomaszewska, B., Bostancı, K., Arda, M., Kabay, N. (2021). Assessment of different nanofiltration and reverse osmosis membranes for simultaneous removal of arsenic and boron from spent geothermal water. J. Hazard. Mater. 405, 124129. https://doi.org/10.1016/j.jhazmat.2020.124129 PMid:33082019

López, J., Reig, M., Vecino, X., Cortina, J.L. (2021). Arsenic impact on the valorisation schemes of acidic mine waters of the Iberian Pyrite Belt: Integration of selective precipitation and spiral-wound nanofiltration processes. J. Hazard. Mater. 403, 123886. https://doi.org/10.1016/j.jhazmat.2020.123886 PMid:33264953

Lopez Diaz-Pavon, A., Cerpa, A., Alguacil, F.J. (2014). Processing of indium(III) solutions via ion exchange with Lewatit K-2621 resin. Rev. Metal. 50 (2), e010. https://doi.org/10.3989/revmetalm.010

Monhemius, A.J. Swash, P.M. (1999). Removing and stabilizing As from copper refining circuits by hydrothermal processing. JOM 51, 30-33. https://doi.org/10.1007/s11837-999-0155-y

Monteiro De Oliveira, E.C., Siqueira Caixeta, E., Santana Vieira Santos, V., Barbosa Pereira, B. (2021). Arsenic exposure from groundwater: environmental contamination, human health effects, and sustainable solutions. J. Toxicol. Environ. Health -B: Crit. Rev. 24 (3), 119-135. https://doi.org/10.1080/10937404.2021.1898504 PMid:33709865

Moreira, V.R., Lebron, Y.A.R., Santos, L.V.S., Coutinho de Paula, E., Amaral, M.C.S. (2021). Arsenic contamination, effects and remediation techniques: A special look onto membrane separation processes. Process. Saf. Environ. Protec. 148, 604-623. https://doi.org/10.1016/j.psep.2020.11.033

Navarro, P., Vargas, C., Araya, E., Martín, I., Alguacil, F.J. (2004). Arsenic precipitation from metallurgical effluents. Rev. Metal. 40 (6), 409-412. https://doi.org/10.3989/revmetalm.2004.v40.i6.297

Rathi, B.S., Kumar, P.S., Ponprasath, R., Rohan, K., Jahnavi, N. (2021). An effective separation of toxic arsenic from aquatic environment using electrochemical ion exchange process. J. Hazard. Mater. 412, 125240. https://doi.org/10.1016/j.jhazmat.2021.125240 PMid:33529832

Rojas-Challa, Y., de Gyves, J., Ortega-Muñoz, R., Montiel-Aguirre, F., González-Albarrán, R., Rodríguez de San Miguel, E. (2021). Comparative study of As (V) uptake in aqueous medium by a polymer inclusion membrane-based passive sampling device and two filamentous fungi (Aspergillus niger and Rhizopus sp.). Chemosphere 272, 129920. https://doi.org/10.1016/j.chemosphere.2021.129920 PMid:33607495

Sherugar, P., Naik, N.S., Padaki, M., Nayak, V., Gangadharan, A., Nadig, A.R., Déon, S. (2021). Fabrication of zinc doped aluminium oxide/polysulfone mixed matrix membranes for enhanced antifouling property and heavy metal removal. Chemosphere 275, 130024. https://doi.org/10.1016/j.chemosphere.2021.130024 PMid:33662734

Silva, S.J.B.E., Ferreira, G.M.D., Neves, H.P., de Lemos, L.R., Dias Rodrigues, G., Mageste, A.B. (2021). Use of aqueous two-phase systems formed by Triton X and choline chloride for extraction of organic and inorganic arsenic. Sep. Purif. Technol. 263, 118082. https://doi.org/10.1016/j.seppur.2020.118082

Weerasundara, L., Ok, Y.-S., Bundschuh, J. (2021). Selective removal of arsenic in water: A critical review. Environ. Poll. 268, 115668. https://doi.org/10.1016/j.envpol.2020.115668 PMid:33017746

Wust, W.F., Kober, R., Schlicker, O., Dahmke, A. (1999). Combined zero- and first-order kinetic model of the degradation of TCE and cis-DCE with commercial iron. Environ. Sci. Technol. 33 (23), 4304-4309. https://doi.org/10.1021/es980439f

Published

2022-07-26

How to Cite

Alguacil, F. J. ., & Escudero, E. . (2022). The removal of toxic metals from liquid effluents by ion exchange resins. Part XVII: Arsenic(V)/H+/Dowex 1x8. Revista De Metalurgia, 58(2), e221. https://doi.org/10.3989/revmetalm.221

Issue

Section

Articles

Most read articles by the same author(s)

1 2 > >>