Experimental characterization of nanoparticles emissions during Laser Shock Processing of AA6061, AISI304 and Ti6Al4V
DOI:
https://doi.org/10.3989/revmetalm.104Keywords:
AA6061, AISI304, Laser shock peening, Nanoparticles, Ti6Al4VAbstract
This paper describes an experimental study on the emission of nanometric size particles during laser shock processing of metallic materials: stainless steel, aluminum and titanium alloys which are the most common ones processed by this technique. The emission of nanometric size particles was confirmed to consist of aggregates composed of smaller spherical particles in the range of 10-20 nm, covered by a small concentric “layer” probably of metal oxides. The analysis of the nanoparticles showed the presence of the main elements present in the tested alloys as well as high oxygen content, which is another indication of the presence of oxides of Fe, Al and Ti. The amount of emitted nanoparticles, showed considerable increases over the baseline measured for the working environment, and these increases correspond to the more intense pulses of the laser beam. The material density was seen to highly affect the quantity of emitted nanoparticles. During LSP of aluminium alloy (the lighter material) a large quantity of nanoparticles was measured, while in LSP of stainless steel few nanoparticles were observed, and this is the denser material, among the three tested. Titanium alloy results in intermediate values. The study of these emissions is innovative and relevant for industrial environments where the manufacturing process is in use.
Downloads
References
Albuquerque, P.C., Gomes, J.F., Pereira, C.A., Miranda, R.M. (2015). Assessment and control of nanoparticles exposure in welding operations by use of a Control Banding Tool. J. Clean. Prod. 89, 296–300. https://doi.org/10.1016/j.jclepro.2014.11.010
Asbach, C., Fissan, H., Stahlmecke, B., Kuhlbusch, T., Pui, D. (2009). Conceptual limitations and extensions of lung-deposited Nanoparticle Surface Area Monitor (NSAM). J. Nanopart. Res. 11 (1), 101–109. https://doi.org/10.1007/s11051-008-9479-8
Buonanno, G., Morawska, L., Stabile, L. (2011). Exposure to welding particles in automotive plants. J. Aerosol Sci. 42 (5), 295–304. https://doi.org/10.1016/j.jaerosci.2011.02.003
Gomes, J., Albuquerque, P., Miranda, R.M., Vieira, M.T. (2012a). Determination of Airborne Nanoparticles from Welding Operations. J. Toxicol. Env. Heal. A 75 (13-15), 747–755. https://doi.org/10.1080/15287394.2012.688489 PMid:22788362
Gomes, J., Albuquerque, P., Miranda, R., Santos, T., Vieira, M.T. (2012b). Comparison of deposited surface area of airborne ultrafine particles generated from two welding processes. Inhal. Toxicol. 24 (11), 774–781. https://doi.org/10.3109/08958378.2012.717648 PMid:22954401
Gomes, J., Guerreiro, C., Lavrador, D., Carvalho, P., Miranda, R.M. (2013). TEM analysis as a tool for toxicological assessment of occupational exposure to airborne nanoparticles from welding. Microsc. Microanal. 19 (S4), 153–154. https://doi.org/10.1017/S1431927613001384
Guerreiro, C., Gomes, J.F.P., Carvalho, P., Santos, T., Miranda, R.M., Albuquerque, P. (2014). Characterisation of airborne particles generated from metal active gas welding process. Inhal. Toxicol. 26 (6), 345–352. https://doi.org/10.3109/08958378.2014.897400 PMid:24730680
Oberdorster, G. (2000). Pulmonary effects of inhaled ultrafine particles. Int. Arch. Occ. Env. Hea. 74 (1), 1–8. https://doi.org/10.1007/s004200000185
Oca-a, J., Molpeceres, C., Porro, J., Gomez, G., Morales, M. (2004). Experimental assessment of the influence of irradiation parameters on surface deformation and residual stresses in laser shock processed metallic alloys. Appl. Surf. Sci. 238 (1-4), 501–505. https://doi.org/10.1016/j.apsusc.2004.05.246
Phallen, R. (1999). Particle size-slective sampling for particulate air contaminants. Ed. J. H. Vincent, ACGIH, Cincinnati, OH, USA.
Rubio-Gonzalez, C., Oca-a, J., Gomez-Rosas, G., Molpeceres, C., Paredes, M., Banderas, A., Porro, J., Morales, M. (2004). Effect of laser shock processing on fatigue crack growth and fracture toughness of 6061-T6 aluminum alloy. Mat. Sci. Eng. A-Struct. 386 (1-2), 291–295. https://doi.org/10.1016/j.msea.2004.07.025
Tsai, C., Huang, C., Chen, S., Ho, C., Huang, C., Chen, C., Cheng, C., Tsai, S., Ellenbecker, M. (2011). Exposure assessment of nano-sized and respirable particles at different workplaces. J. Nanopart. Res. 13 (9), 4161–4172. https://doi.org/10.1007/s11051-011-0361-8
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the printed and online versions of this Journal are the property of Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a “Creative Commons Attribution 4.0 International” (CC BY 4.0) License. You may read the basic information and the legal text of the license. The indication of the CC BY 4.0 License must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the published by the Editor, is not allowed.