Teaching how to determine the Charpy impact according to the general requirements defined in part-UG of the ASME VIII code division 1
DOI:
https://doi.org/10.3989/revmetalm.141Keywords:
ASME VIII, Charpy, Resilience, Toughness, WeldingAbstract
The objective of the present work is to teach the criteria proposed by the ASME VIII code division 1 to determine when an impact test should be carried out on a base metal and on a welded joint using the general requirements specified in general requirements, which is defined in part UG,of the ASME VIII code div. 1. Charpy impact the can be used to evaluate the toughness of metallic materials that are listed in ASME II and Article QW-422 ASME IX. This paper presents a methodology through flow diagrams that allows the student to determine in a simple way when and how to carry out the Charpy test on a welded joint or a base metal. This methodology was applied to students of the Technical University of Madrid in the last years of university. Future work will explain how to determine the Charpy impact for the [UCS, UHT and UHA] parts of ASME VIII div. 1.
Downloads
References
Bose, D.N. (2011). Semiconductors-a paradigm for teaching materials science and engineering. J. Mat. Educ. 33 (5-6), 283-292.
Dugan, S.W., Chang, R.P.H. (2010). Cascade approach to learning nano science and engineering: A project of the National Center for Learning and Teaching in Nanoscale Science and Engineering. J. Mat. Educ. 32 (1-2), 21-27.
Gliha, V., Vuherer, T., Ule, B., Vojvodic-Tuma, J. (2004). Fracture resistance of simulated heat affected zone areas in HSLA structural steel. Sci. Technol. Weld. Joi. 9 (5), 399-406. https://doi.org/10.1179/136217104225021698
Gutiérrez, I. (2014). Effect of microstructure on the impact toughness of high strength steels. Rev. Metal. 50 (4), e029. https://doi.org/10.3989/revmetalm.029
Javier Naranjo, F., Alejandro Torres, J. (2015). Animations for teaching mechanics of materials using open source finite element method (FEM) tools. J. Mat. Educ. 37 (1-2), 39-58.
Jurado-Navas, A., Munoz-Luna, R. (2017). Scrum Methodology in Higher Education: Innovation in Teaching, Learning and Assessment. Inter. J. Higher Educ. 6 (6), 1-18. https://doi.org/10.5430/ijhe.v6n6p1
López-Martínez, A., Mata-Jiménez, M., Andrade, M., Alaniz-Lumbreras, D., Torres-Arguelles, V., Olvera-González, E., de la Rosa-Miranda, E., Castano, V.M. (2014). Non-linear voltage control in complex electronic materials systems for power transmission: a teaching approach. J. Mater. Educ. 36 (3-4), 97-109.
MEGA (2017). Mega para empresas UCS-23. https://mega.nz/#F!F8AziKxa!B1CrGOX3jqEFrOPtcKyiBQ.
Meseguer-Valdenebro, J.L., Miguel, V., Caravaca, M., Portolés, A., Gimeno, F. (2015). Teaching mechanical properties of different steels for engineering students. J. Mater. Educ. 37 (3-4), 103-118.
Meseguer-Valdenebro, J.L., Portoles, A., Oñoro, J. (2016). Numerical study of TTP curves upon welding of 6063-T5 aluminium alloy and optimization of welding process parameters by Taguchi's method. Indian J. Eng. Mater. Sci. 23 (5), 341-48.
Meseguer-Valdenebro, J.L., Portoles, A., Martinez-Conesa, E. (2017). Teaching of ASME IX code to students of GTAW, GMAW/FCAW, SMAW and SAW welding processes. J. Mat. Educ. 39 (1-2), 19-42.
Romaní, G., Meseguer-Valdenebro, J.L., Portolés, A. (2017). Experimental Research on the Electrical Parameters of GMAW on Different Positions Welds. T. Indian Inst. Metals 70 (1), 159-166. https://doi.org/10.1007/s12666-016-0872-1
Vergara, D., Rubio, M.P. (2012). Active methodologies through interdisciplinary teaching links: industrial radiography and technical drawing. J. Mat. Educ. 34 (5), 175-185.
Vergara, D., Rubio, M.P., Prieto, F., Lorenzo, M. (2016). Enhancing the teaching/learning of materials mechanical characterization by using virtual reality. J. Mat. Educ. 38 (3-4), 63-74.
Yurioka, N. (1995). TMCP steels and their welding. Weld. World 35 (6), 375-390. https://ci.nii.ac.jp/naid/10012487981.
Zalazar, M., Quesada, H.J., Asta, E.P. (1998). Microestructuras producidas en la soldadura de unión de aceros para tuberías de gran diámetro. Rev. Metal 34 (6), 469-475. https://doi.org/10.3989/revmetalm.1998.v34.i6.814
Zalazar, M., Quesada, H.J., Asta, E.P. (2000). Microstructure produced in the welding of steels for wide diameter pipes. Weld. Int. 14 (1), 48-52. https://doi.org/10.1080/09507110009549136
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the printed and online versions of this Journal are the property of Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a “Creative Commons Attribution 4.0 International” (CC BY 4.0) License. You may read the basic information and the legal text of the license. The indication of the CC BY 4.0 License must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the published by the Editor, is not allowed.