Electrochemical corrosion behaviour of Mg-Al alloys with thermal spray Al/SiCp composite coatings

Authors

  • A. Pardo Departamento de Ciencia de Materiales, Facultad de Químicas, Universidad Complutense
  • S. Feliu Jr Centro Nacional de Investigaciones Metalúrgicas CSIC
  • M. C. Merino Departamento de Ciencia de Materiales, Facultad de Químicas, Universidad Complutense
  • M. Mohedano Departamento de Ciencia de Materiales, Facultad de Químicas, Universidad Complutense
  • P. Casajús Departamento de Ciencia de Materiales, Facultad de Químicas, Universidad Complutense
  • R. Arrabal Departamento de Ciencia de Materiales, Facultad de Químicas, Universidad Complutense

DOI:

https://doi.org/10.3989/revmetalm.0931

Keywords:

Magnesium alloys, Composite coatings, Corrosion, Thermal spraying

Abstract


The corrosion protection of Mg-Al alloys by flame thermal spraying of Al/SiCp composite coatings was evaluated by electrochemical impedance spectroscopy in 3.5 wt.% NaCl solution. The volume fraction of SiC particles (SiCp) varied between 5 and 30%. The as-sprayed Al/SiCp composite coatings revealed a high number of micro-channels, largely in the vicinity of the SiC particles, that facilitated the penetration of the electrolyte and the subsequent galvanic corrosion of the magnesium substrates. The application of a cold-pressing post-treatment reduced the degree of porosity of the coatings and improved the bonding at the coating/substrate and Al/SiC interfaces. This resulted in improved corrosion resistance of the coated specimens. The effectiveness of the coatings slightly decreased with the addition of 5-30 vol.% SiCp compared with the unreinforced thermal spray aluminium coatings.

Downloads

Download data is not yet available.

References

[1] H. E. Friedrich y B. L. Mordike, Magnesium Technology, Metallurgy, Design Data, Applications, Springer Berlin, Alemania, 2006, pp. 499-631.

[2] A. Yfantis, I. Paloumpa, D. Schemeiber y D. Yfantis, Surf. Coat. Technol. 151–152 (2002) 400-404. doi:10.1016/S0257-8972(01)01654-1

[3] Y. Mizutani, S. J. Kim, R. Ichino y M. Okido, Surf. Coat. Technol. 169-170 (2003) 143-146.

[4] A. L. Rudd, C. B. Breslin y F. Mansfeld, Corros. Sci. 42 (2000) 275-288.

[5] J. K. Chang, S. Y. Chen, W. T. Tsai, M. J. Deng y I. W. Sun, J. Electrochem. Soc. 155 (2008) C112-C116. doi:10.1149/1.2828016

[6] L. H. Chiu, C. C. Chen y C. F. Yank, Surf. Coat. Technol. 191 (2005) 181-187. doi:10.1016/j.surfcoat.2004.02.035

[7] W. Zhongshan, L. Liufa y D. Wenjiang, Mater. Sci. Forum 488-489 (2005) 685-688. doi:10.4028/www.scientific.net/MSF.488-489.685

[8] L. Zhu y G. Song, Surf. Coat. Technol. 200 (2006) 2.834-2.840.

[9] J. Zhang, Y. Wang, R. Zeng y W. Huang, Mater. Sci. Forum 546–549 (2007) 529-532. doi:10.4028/www.scientific.net/MSF.546-549.529

[10] M. Campo, M. D. Escalera, B. Torres, J. Rams y A. Ureña, Rev. Metal. Madrid 43 (2007) 359-369.

[11] J. Zhang y Y. Wang, Key Eng. Mater. 373-374 (2008) 55-58.

[12] A. Pardo, M. C. Merino, M. Mohedano, P. Casajús, A. E. Coy y R. Arrabal, Surf. Coat. Technol. 203 (2009) 1252-1263. doi:10.1016/j.surfcoat.2008.10.030

[13] B. Wielage, T. Grund, H. Pokhmurska, C. Rupprecht y T. Lampke, Key Eng. Mater. 384 (2008) 99-116. doi:10.4028/www.scientific.net/KEM.384.99

[14] H. Pokhmurska, B. Wielage, T. Lampke, T. Grund, M. Student y N. Chervinska, Surf. Coat. Technol. 202 (2008) 4.515-4.524.

[15] A. Pardo, P. Casajús, M. Mohedano, A. E. Coy, F. Viejo, B. Torres y E. Matykina, Appl. Surf. Sci. 255 (2009) 6.968-6.977.

[16] A. Pardo, M. C. Merino, P. Casajús, M. Mohedano, R. Arrabal y E. Matykina, Mater. Corros. 60 (2009) 939-948. doi:10.1002/maco.200905348

[17] S. Suresh, A. Mortenson y A. Needlman, Fundamentals of metal matrix composites, Publisher: Butterwort-Heinemann, EE. UU., 1993, pp. 139-191.

[18] H. R. Hafizpour y A. Simchi, Powder Metall. 51 (2008) 217-223. doi:10.1179/174329007X22250

[19] D.M. Aylor and D. Taylor, ASM Handbook: Corrosion of metal-matrix composites, Vol. 13 A, ASM International, Materials Park, OH, EE. UU., 1978, pp. 525-542.

[20] L. H. Hihara y P. K. Kondepudi, Corros. Sci. 36 (1994) 1.585-1.595.

[21] Shruti Tiwari, R. Balasubra y M. Gupta, Corros. Sci. 49 (2007) 711-725.

[22] M. S. Bin Selamat, Adv. Perfom. Mater. 3 (1996) 183-204. doi:10.1007/BF00136745

[23] M. S. N. Bhat, M. K. Surappa y H. V. Sudhaker Nayak, J. Mater. Sci. 26 (1991) 4.991-4.996.

[24] D. G. Kolman y D. P. Butt, J. Electrochem. Soc. 144 (1997) 3.785-3.791.

[25] H. Ding y l. H. Hihara, J. Electrochem. Soc. 152 (2005) B161-B167.

[26] A. Pardo, M. C. Merino, A. E. Coy, R. Arrabal, F. Viejo y E. Matykina, Corros. Sci. 50 (2008) 823-834. doi:10.1016/j.corsci.2007.11.005

[27] M. Stern y A. L. Geary, J. Electrochem. Soc. 104 (1957) 56-63. doi:10.1149/1.2428496

[28] B.A. Shaw, ASM Handbook: Corrosion Funda - men tals, Testing and Protection, Vol. 13 A, ASM International, Materials Park, OH, EE. UU., 2003, pp. 692-696.

[29] A. Pardo, M. C. Merino, R. Arrabal, F. Viejo, M. Carboneras y J. A. Muñoz, Corros. Sci. 48 (2006) 3.035-3.048.

[30] A. Pardo, M. C. Merino, S. Merino, F. Viejo, M. Carboneras y R. Arrabal, Corros. Sci. 47 (2005) 1.750-1.764.

[31] A. Pardo, M. C. Merino, S. Merino, M.D. Lopez, F. Viejo, M. Carboneras y R. Arrabal, Rev. Metal. Madrid 40 (2004) 341-346.

Downloads

Published

2010-04-30

How to Cite

Pardo, A., Feliu Jr, S., Merino, M. C., Mohedano, M., Casajús, P., & Arrabal, R. (2010). Electrochemical corrosion behaviour of Mg-Al alloys with thermal spray Al/SiCp composite coatings. Revista De Metalurgia, 46(2), 129–142. https://doi.org/10.3989/revmetalm.0931

Issue

Section

Articles