Atmospheric corrosion of low carbon steel in a polar marine environment. Study of the effect of wind regime
DOI:
https://doi.org/10.3989/revmetalm.2007.v43.i5.81Keywords:
Atmospheric corrosion, Low-carbon steel, Salinity, Wind, AntarcticaAbstract
The present work studies the atmospheric corrosion of carbon steel (UNE-EN 10130) in a sub-polar marine environment (Artigas Antarctic Scientific Base (BCAA), Uruguay) as a function of site atmospheric salinity and exposure time. A linear relationship is established between corrosion rate and airborne salinity deposition rate, valid in the deposition range encountered (125-225 mg Cl–/m2•d), and a bilogarithmic relationship is established between corrosion and exposure time (1-4 years). Atmospheric salinity is related with the monthly wind speed average, based on the concept of the wind run. Chloride ion deposition rates of less than 300 mg Cl–/m2•d are related with remote (oceanic) winds and coastal winds basically of speeds between 1-40 km/h, while higher deposition rates (300-700 mg Cl–/m2•d) correspond to coastal marine winds of a certain persistence with speeds of between 41-80 km/h.
Downloads
References
[1] S. Feliu y M. Morcillo, Corrosión y protección de los metales en la atmósfera. Ed. Bellaterra, Barcelona, España, 1982, p. 1.
[2] C. Leygraf y T.E. Graedel, Atmospheric corrosion, John Wiley and Sons, New Cork, EE. UU., 2000, p. 98.
[3] K. Barton, Protection against atmospheric corrosion, John Wiley and Sons, New york, EE.UU., 1976, p. 10.
[4] H.R. Ambler y A.A.J. Bain, J. Appl. Chem. 5 (1955) 437.
[5] M. Morcillo, B. Chico, L. Mariaca y E. Otero, Corros. Sci. 42 (2000) 91-104. doi:10.1016/S0010-938X(99)00048-7
[6] S. Rivero et al., Revista del Instituto Antártico Uruguayo, 4 (1993) 7-17.
[7] M. Morcillo. B. Chico y E. Otero, Mater. Perform. (1999) 72-77.
[8] S. Feliu, M. Morcillo y B. Chico, Br. Corros. J. 36 (2001) 157-160. doi:10.1179/000705901101501604
[9] D.C. Blanchard y A.H. Woodcock, Ann. Ny Acad. Sci. 338 (1980) 330-347. doi:10.1111/j.1749-6632.1980.tb17130.x
[10] J.W. Fitzgerald, Atmos. Environ. 25A (1991) 533-545.
[11] J. Wu, Science, 212 (1981) 324-326. doi:10.1126/science.212.4492.324
PMid:17792087
[12] I.S. Cole, D.A. Paterson y W.D. Ganther, Corros. Eng. Sci. Technol. 38 (2003) 129-134. doi:10.1179/147842203767789203
[13] W.A. Mckay, J.A. Garland, D. Livesley, C.M. Halliwell y M.I. Walker, Atmos. Environ. 28 (1994) 3.299-3.309.
[14] K.E. Johnson y J.F. Stanners, Rept. EUR 7433, Luxembourg, 1981.
[15] G.A. King y B. Carberry, Technical Report TR 92/1, CSIRO, Australia,1992.
[16] D.P. Doyle y H.P. Godard, Nature 200 (1963) 4912. doi:10.1038/2001167a0
[17] D.P. Doyle y H.P. Godard, Proc. 3rd Int. Cong.Metallic, Vol. IV, Corrosion, MIR Publishers, Moscú, 1969, pp. 429-437.
[18] S. Feliu, M. Morcillo y B. Chico, Corrosion 55 (1999) 883-891.
[19] I.S. Cole, W.y. Chan, G.S. Trinidad y D.A. Paterson, Corros. Eng. Sci. Technol. 39 (2004) 89-96. doi:10.1179/147842204225016831
[20] R.F. Lovett, Tellus 30 (1978) 358.
[21] N.J. Taylor y J. Wu, J. Geophys. Res. 97 (1992) 7355. doi:10.1029/92JC00385
[22] P.V. Strekalov, yu. M. Panchenko, Prot. Met. 30 (1994) 254.
[23] S. Rivero y P. Krecl, Proc. 15th Int Corrosion Congress, Granada, 2002, Trabajo Nº 650.
[24] S. Rivero, Conferencia 15, URUMAN 2005, LATU, Uruguay, Abril 2005,
[25] S. Rivero, Trabajo 23, LATINCORR 2006, Fortaleza (Brasil), 2006,
[26] S. Feliu, M. Morcillo y S. Feliu Jr., Corros. Sci. 34 (1993) 403. doi:10.1016/0010-938X(93)90112-T
[27] ISO 9225, Geneve (1992).
[28] ISO/DIS 8407, Geneve (1992).
[29] ISO 9226, Geneve (1992).
[30] Escala Beaufort, http://www.crch.noaa.gov/lot/webpage/beaufort.
[31] E. Almeida, M. Morcillo y B. Rosales, Mater. Corros. 51 (2000) 865-874.
[32] E. Escudero, M.J. Bartolome, V. Lopez, J. Simancas, J.A. Gonzalez, M. Morcillo y E. Otero, Rev. Metal. Madrid 41 (2005) 133-138.
[33] ISO 9223, Geneve (1992).
[34] Rivero, S., Trabajo para el título Magister en Ingeniería, Udela R (1996).
[35] J.D. Hughes, G.A. King y D.J. O’obrien, Proc. 13th ICC, Melbourne, Australia, 1996.
[36] Corrosión y Protección de Metales en las Atmósferas de Iberoamérica, Parte I-Mapas de Iberoamérica de Corrosividad Atmosférica (Proyecto MICAT, XV.1/CyTED), Eds. M. Morcillo, B. Rosales, J. Uruchurtu y M. Marrocos, CyTED, Madrid, Epaña, 1999, p. 492.
[37] S. Feliu, M. Morcillo y S. Feliu Jr., Corros. Sci. (1993) 415-422. doi:10.1016/0010-938X(93)90113-U
[38] M. Morcillo, J. Simancas y S. Feliu, Atmospheric corrosion, ASTM STP 1239, Eds. W.W. Kirk y H.H. Lawson Eds., ASTM, Philadelphia, EE. UU., 1995, 195-212.
[39] S. Bello, M. Bidegain y H, Lobato, Características Climatológicas de la Bahía Collins (Isla Rey Jorge), Dirección Nacional de Meteorología, Uruguay, 1995.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2007 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the printed and online versions of this Journal are the property of Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a “Creative Commons Attribution 4.0 International” (CC BY 4.0) License. You may read the basic information and the legal text of the license. The indication of the CC BY 4.0 License must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the published by the Editor, is not allowed.