X-ray diffraction line profile analysis of Cu –2 wt. % Cr –6 wt. % Mo alloy mechanically alloyed

Authors

  • C. Aguilar Instituto de Materiales y Procesos Trmomecánicos, Facultad de Ciencias de la Ingeniería, Universidad Austral de Chile
  • V. Martínez Tekmetall, Metalurgical Solutions, S.L., San Sebastián
  • S. Ordóñez Tekmetall, Metalurgical Solutions, S.L., San Sebastián
  • O. Pávez Departamento de Metalurgia. Universidad de Atacama
  • L. Valderrama Departamento de Metalurgia. Universidad de Atacama

DOI:

https://doi.org/10.3989/revmetalm.2008.v44.i3.112

Keywords:

Mechanical alloying, XRD, Crystallite size, Stacking fault, Cu-Cr-Mo

Abstract


By X-ray diffraction line profile analysis it is possible to obtain valid information of structure and properties of materials. This method is a powerful tool for nanomaterials microstructure characterization. In the present work mechanical alloying of ternary system Cu -2 wt. % Cr -6 wt. % Mo was made between 0.25 and 4 h of milling. By means of modified Warren-Averbach and Williamson-Hall methods the crystallite size, dislocation density, microstrain and average distance between dislocations were estimated. The crystallite size values were corrected by stacking fault presence. It was demonstrated that powders have a high anisotropic strain, which was corrected using the average dislocation contrast factors for fcc structures. Also the influence of milling time and percentage of solute on stacking fault probability and stacking fault energy was determined.

Downloads

Download data is not yet available.

References

[1] E. MA, Prog. Mater. Sci. 50 (2005) 413-509. doi:10.1016/j.pmatsci.2004.07.001

[2] C. Suryanarayana, Mechanical Alloying and Mill, Marcell Dekker, Primera edición, New York, USA, 2004, pp. 83-94.

[3] E. Gaffet, C. Louison, M. Harmelin y F. Faudet, Mater. Sci. Eng. A 134 (1991) 1.380- 1.384.

[4] Y. Ogino, S. Murayama y T. Yamasaki, J. Less Common Metals 168 (1991) 221-235. doi:10.1016/0022-5088(91)90304-M

[5] M. Barro, E. Navarro, P. Agudo, A. Hernando, P. Crespo y A. García-Escorial, Mater. Sci. Forum 235:238 (1997) 553-558.

[6] Y. Wang, M. Chen, F. Zhou y E. Ma, Nature 419 (2002) 912-915. doi:10.1038/nature01133 PMid:12410306

[7] C. Suryanarayana, G.E. Korth y F.H. Froes, Metall. Mater. Trans. A 28 (1997) 293- 302. doi:10.1007/s11661-997-0132-4

[8] J. García-Barriocanal, G. Garcés, P. Pérez y P. Adeva, Rev. Metal. Madrid 41 (2005) 281-290.

[9] T. Chen, J.M. Hampikian y N.N. Thadhani, Acta Mater. 47 (1999) 2.567-2.579.

[10] J. Gubicza, M. Kassem, G. Ribárik y T. Ungár, Mater. Sci. Eng. A 372 (2004) 115-122. doi:10.1016/j.msea.2003.12.016

[11] E. Schafler, G. Steiner, E. Korznikova, M. Kerber y M.J. Zehetbauer, Mater. Sci. Eng. A 410/411 (2005) 169-173. doi:10.1016/j.msea.2005.08.070

[12] F.H. Froes, C. Suryanarayana, K.C. Rissell y C.M. Ward-Close. Novel Techniques in Synthesis and Processing of Advanced Materials, proceeding of a Symposium. Illinois, 1994. The Minerals, Metals & Materials Society (TMS) and the Materials Information Society (ASM Internacional).

[13] T. Ungár. Scr. Mater. 51 (2004) 777-781. doi:10.1016/j.scriptamat.2004.05.007

[14] T. Ungár, J. Gubicza, G. Ribárik y A. Borbély, J. Appl. Crys. 34 (2001) 298-310. doi:10.1107/S0021889801003715

[15] I. Groma, Phys. Rev. B 57 (1998) 7.535-7.542.

[16] E.J. Mittemeijer y P. Scardi, Diffraction Analysis of the Microstructure of Materials Spinger Verlag Berlin Heidelberg, New York, EE.UU., 2004, pp. 249-285.

[17] T. Ungár y G. Tichy, Phys. Status Solidi A 171 (1999) 425-434. doi:10.1002/(SICI)1521-396X(199902)171:2<425::AID-PSSA425>3.0.CO;2-W

[18] C. Aguilar, S. Ordoñez, J. Marin, F. Castro y V. Martínez. Mater. Sci. Eng. A en prensa.

[19] B.E. Warren. X-Ray Diffraction, Dover Publications Inc., New York, EE. UU., 1990, pp. 251- 312.

[20] T. Ungár y A. Borbély, Appl. Phys. Lett. 69 (1996) 3.173-3.175.

[21] R. P. Reed y R. E. Schramm, J. Appl. Phys. 45 (1974) 4.705-4.711.

[22] W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, Jhon Wiley & Sons. Tercera Edición, USA, 1989, p. 14.

[23] G.K. Williamson YW.H. Hall, Acta Metall. 1 (1953) 22-31. doi:10.1016/0001-6160(53)90006-6

[24] T. Ungár, I. Dragomir, Á. Revés, A. Borbély, J. Appl. Cryst. 32 (1999) 992-1.002.

[25] F. W. Gayle y F. S. Biancanello, Nanostruc. Mater. 6 (1995) 429-432. doi:10.1016/0965-9773(95)00088-7

[26] C. Aguilar, J. Marín, S. Ordóñez, D. Celentano, F. Castro y V. Martínez, Rev. Metal. Madrid 42 (2006) 334-344.

[27] K. Kapoor, D. Lahiri, I. S. Batra, S. V. R. Rao y T. Sanyal, Mater. Charact. 54 (2005) 131-140. doi:10.1016/j.matchar.2004.09.009

[28] P. Sahu y S.K. Pradhan, J. of Alloy. Compd. 377 (2004) 103-116. doi:10.1016/j.jallcom.2003.10.019

[29] C.N.J. Wagner y J.C. Hélion, J. Appl. Phys. 36 (1965) 2.830-2.837.

[30] W. Truckner y D.E. Mikkola, J. Appl. Phys. 40 (1969) 5.021-5.029.

[31] B.D. Cullity y S.R. Stock, Elements of X-Ray Diffraction, Third Edition, Addison-Wesley, 2001, p. 363.

[32] X.Nie, R. Wang, Y. Ye, Y. Zhou y D. Wang, Solid. State Commun. 96 (1995) 729-734. doi:10.1016/0038-1098(95)00506-4

[33] T. Ungár, Mater. Sci. Eng. A 309/310 (2001) 14-22. doi:10.1016/S0921-5093(00)01685-3

Downloads

Published

2008-06-30

How to Cite

Aguilar, C., Martínez, V., Ordóñez, S., Pávez, O., & Valderrama, L. (2008). X-ray diffraction line profile analysis of Cu –2 wt. % Cr –6 wt. % Mo alloy mechanically alloyed. Revista De Metalurgia, 44(3), 243–250. https://doi.org/10.3989/revmetalm.2008.v44.i3.112

Issue

Section

Articles

Most read articles by the same author(s)