Efecto de las nanopartículas de ZrO2 y L-Cys como agentes dopantes de recubrimientos sol-gel de sílice mesoporosa para la protección anticorrosiva de la aleación de magnesio AZ61
DOI:
https://doi.org/10.3989/revmetalm.155Palabras clave:
Aleación de magnesio, AZ61, Corrosión, DRX, EIS, Recubrimiento sol-gelResumen
Sobre la superficie de la aleación de magnesio AZ61 se aplicaron recubrimientos de sol-gel basados en el precursor GPTMS-TMOS, incluyendo como agentes dopantes L-Cysteína y ZrO2 en diferentes concentraciones. Su resistencia a la corrosión se estudió en solución de 0,6M NaCl, por inmersión hasta 14 días. Los patrones de DRX revelaron que el principal producto de corrosión en las superficies recubiertas es Mg(OH)2, mientras que en la de AZ61 no tratada adicionalmente se formaron varios compuestos de Zn con cloro. El ataque de la corrosión localizada en el AZ61 no tratada se manifiesta en forma de grietas y cavernas, mientras que en las superficies recubiertas la corrosión fue principalmente a través de picaduras. Dos métodos electroquímicos no destructivos fueron empleados en este estudio, que contrastan el comportamiento electroquímico del AZ61 recubierto con el de la aleación no recubierta. La tendencia en los cambios del potencial de corrosión en circuito abierto se correlacionó positivamente con el análisis SEM-EDS y DRX. Los diagramas EIS se ajustaron satisfactoriamente al modelo de circuito equivalente y los valores obtenidos de resistencia a la corrosión Rcorr (Rs + Rct) disminuyen drásticamente con el tiempo de exposición. El efecto de ZrO2 y L-cisteína están marcadamente influenciados por los cambios del pH de la solución, el potencial Zeta de la carga superficial, los procesos de quimisorción y desorción, el estrés interno en el precursor sol-gel, así como el cambio en su estructura, después de la encapsulación de ambos dopantes.
Descargas
Citas
Afrin, N., Chen, D.L., Cao, X., Jahazi, M. (2008). Microstructure and tensile properties of friction stir welded AZ31B magnesium alloy. Mat. Sci. Eng. A 472 (1-2), 179-186. https://doi.org/10.1016/j.msea.2007.03.018
Aperador Chaparro, W., Rodríguez Zamora, G., Franco, F. (2012). Comportamiento de la corrosión de aleaciones de magnesio AZ31-B en ambiente marino, modificadas por el proceso de fricción-agitación. Ingeniare. Rev. Chil. Ing. 20 (1), 119-125. https://doi.org/10.4067/S0718-33052012000100012
Asmussen, R.M., Binns, W.J., Partovi-Nia, R., Jakupi, P., Shoesmith, D.W. (2016). The stability of aluminum-manganese intermetallic phases under the microgalvanic coupling conditions anticipated in magnesium alloys. Mater. Corros. 67 (1), 39-50. https://doi.org/10.1002/maco.201508349
Atik, M., Zarzycki, J. (1994). Protective TiO2-SiO2 coatings on stainless steel sheets prepared by dip-coating. J. Mater. Sci. Lett. 13 (17), 1301-1304. https://doi.org/10.1007/BF00270967
Atik, M., De lima Neto, P., Aegerter, M.A., Avaca, L.A. (1995). Sol-gel TiO2-SiO2 films as protective coatings against corrosion of 316L stainless steel in H2SO4 solutions. J. Appl. Electrochem. 25 (2), 142-148. https://doi.org/10.1007/BF00248171
Barranco, V., Carmona, N., Galván, J.C., Grobelny, M., Kwiatkowski, L., Villegas, M.A. (2010). Electrochemical study of tailored sol-gel thin films as pre-treatment prior to organic coating for AZ91 magnesium alloy. Prog. Org. Coat. 68 (4), 347-355. https://doi.org/10.1016/j.porgcoat.2010.02.009
Barranco, V., El hadad, A.A., Jiménez-Morales, A., Peón, E., Hickman, G.J., Perry, C.C., Galván, J.C. (2014a). Enhancing in vitro biocompatibility and corrosion protection of organic-inorganic hybrid sol-gel films with nanocrystalline hydroxyapatite. J. Mater. Chem. B 2 (24), 3886-3896. https://doi.org/10.1039/C4TB00173G
Barranco, V., Jiménez-Morales, A., Hickman, G. J., Galván, J. C., Perry, C. C., El hadad, A.A. (2014b). Triethylphosphite as a network forming agent enhances in vitro biocompatibility and corrosion protection of hybrid organic-inorganic sol-gel coatings for Ti6Al4V alloys. J. Mater. Chem. B 2 (45), 7955-7963. https://doi.org/10.1039/C4TB01175A
Behzadnasab, M., Mirabedini, S.M., Kabiri, K., Jamali, S. (2011). Corrosion performance of epoxy coatings containing silane treated ZrO2 nanoparticles on mild steel in 3.5% NaCl solution. Corros. Sci. 53 (1), 89-98. https://doi.org/10.1016/j.corsci.2010.09.026
Caruso, R., Diáz-Parralejo, A., Miranda, P., Guiberteau, F. (2001). Controlled preparation and characterization of multilayer sol-gel zirconia dip-coatings. J. Mater. Res. 16 (8), 2391-2398. https://doi.org/10.1557/JMR.2001.0328
Chen, Y., Jin, L., Xie, Y. (1998). Sol-Gel processing of organic-inorganic nanocomposite protective coatings. J. Sol-Gel Sci. Techn. 13 (1-3), 735-738. https://doi.org/10.1023/A:1008657408992
Córdoba, L., Montemor, M., Coradin, T. (2016). Silane/TiO2 coating to control the corrosion rate of magnesium alloys in simulated body fluid. Corros. Sci. 104, 152-161. https://doi.org/10.1016/j.corsci.2015.12.006
De Lima Neto, P., Atik, M., Avaca, L.A., Aegerter, M.A. (1994). Sol-gel coatings for chemical protection of stainless steel. J. Sol-gel Sci. Techn. 2 (1-3), 529-534. https://doi.org/10.1007/BF00486303
El-Hadad, A.A., Barranco, V., Samaniego, A., Llorente, I., García-Galván, F.R., Jiménez-Morales, A., Galván, J.C., Feliu Jr., S. (2014). Influence of substrate composition on corrosion protection of sol-gel thin films on magnesium alloys in 0.6 M NaCl aqueous solution. Prog. Org. Coat. 7 (11), 1642-1652. https://doi.org/10.1016/j.porgcoat.2014.05.026
Gallardo, J., Duran, A., Garcia, I., Celis, J.P., Arenas, M.A., Conde, A. (2003). Effect of sintering temperature on the corrosion and wear behavior of protective SiO2-based sol-gel coatings. J. Sol-Gel Sci. Techn. 27 (2), 175-183. https://doi.org/10.1023/A:1023702701850
García-Heras, M., Jiménez-Morales, A., Casal, B., Galván, J.C., Radzki, S., Villegas, M.A. (2004). Preparation and electrochemical study of cerium-silica sol-gel thin films. J. Alloys Comp. 380 (1-2), 219-224. https://doi.org/10.1016/j.jallcom.2004.03.047
Gomez-Romero, P. (2001). Hybrid organic-inorganic materials-in search of synergic activity. Adv. Mater. 13 (3), 163-174. https://doi.org/10.1002/1521-4095(200102)13:3<163::AID-ADMA163>3.0.CO;2-U
Gray, J., Luan, B. (2002). Protective coatings on magnesium and its alloys-a critical review. J. Alloys Compd. 336 (1-2), 88-113. https://doi.org/10.1016/S0925-8388(01)01899-0
Guo, X., An, M., Yang, P., Li, H., Su, C. (2009). Effects of benzotriazole on anodized film formed on AZ31B magnesium alloy in environmental-friendly electrolyte. J. Alloys Compd. 482 (1-2), 487-497. https://doi.org/10.1016/j.jallcom.2009.04.053
Gusmano, G., Montesperelli, G., Rapone, M., Padeletti, G., Cusmà, A., Kaciulis, S., Mezzi, A., Di Maggio, R. (2007). Zirconia primers for corrosion resistant coatings. Surf. Coat. Tech. 201 (12), 5822-5828. https://doi.org/10.1016/j.surfcoat.2006.10.036
Hamu, G.B., Eliezer, D., Wagner. L. (2009). The relation between severe plastic deformation microstructure and corrosion behavior of AZ31 magnesium alloy. J. Alloys Compd. 468 (1-2), 222-229. https://doi.org/10.1016/j.jallcom.2008.01.084
Han, G., Liu, X. (2016). Phase control and formation mechanism of Al-Mn(-Fe) intermetallic particles in Mg-Al-based alloys with FeCl3 addition or melt superheating. Acta Mater. 114, 54-66. https://doi.org/10.1016/j.actamat.2016.05.012
Hernández-Alvarado, L.A., Lomelí, M.A., Hernández, L.S., Miranda, J.M., Narváez, L., Díaz, I., García-Alonso, M.C., Escudero, M.L. (2014). Caracterización y comportamiento frente a la corrosión de recubrimientos de ácido fítico, obtenidos por conversión química, sobre substratos de magnesio en solución fisiológica. Rev. Metal. 50 (2), e012. https://doi.org/10.3989/revmetalm.012
ISO 8407 (1991). Corrosion of metals and alloys -- Removal of corrosion products from corrosion test specimens. International Organization for Standardization, Genève.
Jiménez-Morales, A., Galván, J.C., Aranda, P. (2002). A new silver-ion selective sensor based on a polythiacrown-ether entrapped by sol-gel. Electrochim. Acta 47 (13-14), 2281-2287. https://doi.org/10.1016/S0013-4686(02)00068-3
Judeinstein, P., Sanchez, C. (1996). Hybrid organic-inorganic materials: a land of multidisciplinarity. J. Mater. Chem. 6 (4), 511-525. https://doi.org/10.1039/JM9960600511
Kahraman, M.V., Ku?u, M., Mencelo?lu, Y., Kayaman-Apohan, N., Güngör, A. (2006). The novel use of organo alkoxy silane for the synthesis of organic-inorganic hybrid coatings. J. Non-Cryst. Solids. 352 (21-22), 2143-2151. https://doi.org/10.1016/j.jnoncrysol.2006.02.029
Liu, H., Sun, X., Yin, C., Hu, C. (2008). Removal of phosphate by mesoporous ZrO2. J. Hazard. Mater. 151 (2-3), 616-622. https://doi.org/10.1016/j.jhazmat.2007.06.033 PMid:17658689
Liu, X., Huang, Y., Yang, J. (2002). Effect of rheological properties of the suspension on the mechanical strength of Al2O3-ZrO2 composites prepared by gelcasting. Ceram. Int. 28 (2), 159-164. https://doi.org/10.1016/S0272-8842(01)00072-4
Liu, X., Yue, Z., Romeo, T., Weber, J., Scheuermann, T., Moulton, S., Wallace, G. (2013). Biofunctionalized anti-corrosive silane coatings for magnesium alloys. Acta Biomater. 9 (10), 8671-8677. https://doi.org/10.1016/j.actbio.2012.12.025 PMid:23313945
Luo, J., Cui, N. (1998). Effects of microencapsulation on the electrode behavior of Mg2Ni-based hydrogen storage alloy in alkaline solution. J. Alloys Compd. 264 (1-2), 299-305. https://doi.org/10.1016/S0925-8388(97)00277-6
Ma, X., Guo, Q., Xie, Y., Ma, H. (2016). Green chemistry for the preparation of L-cysteine functionalized silver nanoflowers. Chem. Phys. Lett. 652, 148-151. https://doi.org/10.1016/j.cplett.2016.04.004
Minti, H., Eyal, M., Reisfeld, R., Berkovic, G. (1991). Quantum dots of cadmium sulfide in thin glass films prepared by sol-gel technique. Chem. Phys. Lett. 183 (3-4), 277-282. https://doi.org/10.1016/0009-2614(91)80063-4
Mirabedini, S., Behzadnasab, M., Kabiri, K. (2012). Effect of various combinations of zirconia and organoclay nanoparticles on mechanical and thermal properties of an epoxy nanocomposite coating. Compos. Part A Appl. Sci. Manuf. 43 (11), 2095-2106. https://doi.org/10.1016/j.compositesa.2012.07.002
Mocanu, A., Cernica, I., Tomoaia, G., Bobos, L. D., Horovitz, O., Tomoaia-Cotisel, M. (2009). Self-assembly characteristics of gold nanoparticles in the presence of cysteine. Colloid Surface A 338 (1-3), 93-101. https://doi.org/10.1016/j.colsurfa.2008.12.041
Montoya, P., Martins, C.R., de melo, H.G., Aoki, I.V., Jaramillo, F., Calderón, J.A. (2014). Synthesis of polypyrrole-magnetite/silane coatings on steel and assessment of anticorrosive properties. Electrochim. Acta 124, 100-108. https://doi.org/10.1016/j.electacta.2013.07.105
Novak, B.M. (1993). Hybrid nanocomposite materials-between inorganic glasses and organic polymers. Adv. Mater. 5 (6), 422-433. https://doi.org/10.1002/adma.19930050603
Pan, F., Feng, Z., Zhang, X., Tang, A. (2012). The types and distribution characterization of Al-Mn phases in the AZ61 magnesium alloy. Procedia Engineer. 27, 833-839. https://doi.org/10.1016/j.proeng.2011.12.528
Park, M., Lee, J. E., Park, C. G., Ho Lee, S., Kwang Seok, H., Bin Choy, Y. (2013). Polycaprolactone coating with varying thicknesses for controlled corrosion of magnesium. J. Coat. Technol. Res. 10 (5), 695-706. https://doi.org/10.1007/s11998-013-9474-6
Radhakrishnan, S., Siju, C.R., Mahanta, D., Patil, S., Madras, G. (2009). Conducting polyaniline-nano-TiO2 composites for smart corrosion resistant coatings. Electrochim. Acta 54 (4), 1249-1254. https://doi.org/10.1016/j.electacta.2008.08.069
Rueda, L.M., Hernández, C.A., Viejo, F., Coy, A.E., Mosa, J., Aparicio, M. (2016). Diseño de recubrimientos multicapa barrera-biomimético base TEOS-GPTMS sobre la aleación de magnesio Elektron 21 de potencial aplicación en la fabricación de implantes ortopédicos. Rev. Metal. 52 (3), e075. https://doi.org/10.3989/revmetalm.075
Sayilkan, H., ?ener, ?., ?ener, E., Sülü, M. (2003). The sol-gel synthesis and application of some anticorrosive coating materials. Mater. Sci. 39 (5), 733-739. https://doi.org/10.1023/B:MASC.0000023514.74970.73
Shchukin, D.G., Zheludkevich, M., Yasakau, K., Lamaka, S., Ferreira, M.G.S., Möhwald, H. (2006). Layer-by-layer assembled nanocontainers for self-healing corrosion protection. Adv. Mater. 18 (13), 1672-1678. https://doi.org/10.1002/adma.200502053
Stein, A., Melde, B.J., Schroden, R.C. (2000). Hybrid inorganic-organic mesoporous silicates-nanoscopic reactors coming of age. Adv. Mater. 12 (19), 1403-1419. https://doi.org/10.1002/1521-4095(200010)12:19<1403::AID-ADMA1403>3.0.CO;2-X
Storey, R.F., Rawlins, J.W. (2014). The Waterborne Symposium. In Proceedings of the forty-first annual international waterborne, highsolids, and powder coating symposium. Lulu Press Inc, New Orleans, LA, February.
Sunwoo, S., Kim, J.H., Lee, K.G., Kim, H. (2000). Preparation of ZrO2 coated graphite powders. J. Mater. Sci. 35 (14), 3677-3680. https://doi.org/10.1023/A:1004894404376
Supplit, R., Koch, T., Schubert, U. (2007). Evaluation of the anti-corrosive effect of acid pickling and sol-gel coating on magnesium AZ31 alloy. Corros. Sci. 49 (7), 3015-3023. https://doi.org/10.1016/j.corsci.2007.02.006
Tamar, Y., Mandler, D. (2008). Corrosion inhibition of magnesium by combined zirconia silica sol-gel films. Electrochim. Acta 53 (16), 5118-5127. https://doi.org/10.1016/j.electacta.2008.02.029
Tan, A., Soutar, A.M., Annergren, I.F., Liu, Y.N. (2005). Multilayer sol-gel coatings for corrosion protection of magnesium. Surf. Coat. Tech. 198 (1-3), 478-482. https://doi.org/10.1016/j.surfcoat.2004.10.066
Wang, D., Bierwagen, G.P. (2009). Sol-gel coatings on metals for corrosion protection. Prog. Org. Coat. 64 (4), 327-338. https://doi.org/10.1016/j.porgcoat.2008.08.010
Wang, H., Shi, Z. (2011). In vitro biodegradation behavior of magnesium and magnesium alloy. J. Biomed. Mater. Res. 98B (2), 203-209. https://doi.org/10.1002/jbm.b.31769 PMid:21732527
Zhang, X., Wang, F., Du, Y. (2007). Effect of nano-sized titanium powder addition on corrosion performance of epoxy coatings. Surf. Coat. Tech. 201 (16-17), 7241-7245. https://doi.org/10.1016/j.surfcoat.2007.01.042
Zhang, S., Zhang, X., Zhao, C., Li, J., Song, Y., Xie, C., Tao, H., Zhang, Y., He, Y., Jiang, Y., Bian, Y. (2010). Research on an Mg-Zn alloy as a degradable biomaterial. Acta Biomater. 6 (2), 626-640. https://doi.org/10.1016/j.actbio.2009.06.028 PMid:19545650
Zhang, L., Xu, C., Song, G., Li, B. (2015). Self-assembly of L-cysteine-gold nanoparticles as chiral probes for visual recognition of 3, 4-dihydroxyphenylalanine enantiomers. RSC Adv. 5 (34), 27003-27008. https://doi.org/10.1039/C5RA01271F
Zheludkevich, M., Miranda Salvado, I., Ferreira, M.G.S. (2005). Sol-gel coatings for corrosion protection of metals. J. Mater. Chem. 15 (48), 5099-5111. https://doi.org/10.1039/b419153f
Zheludkevich, M.L., Serra, R., Montemor, M.F., Miranda Salvado, I.M., Ferreira, M.G.S. (2006). Corrosion protective properties of nanostructured sol-gel hybrid coatings to AA2024-T3. Surf. Coat. Tech. 200 (9), 3084-3094. https://doi.org/10.1016/j.surfcoat.2004.09.007
Zhong, X., Li, Q., Hu, J., Lu, Y. (2008). Characterization and corrosion studies of ceria thin film based on fluorinated AZ91D magnesium alloy. Corros. Sci. 50 (8), 2304-2309. https://doi.org/10.1016/j.corsci.2008.05.016
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2019 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.
Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Consulte la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.