Mejora de las propiedades mecánicas del compuesto base de aluminio reforzado con alambre de acero Ck75 mediante soldadura explosiva

Autores/as

DOI:

https://doi.org/10.3989/revmetalm.196

Palabras clave:

Acero CK75, Al 1050, Simulación, Intervalo de soldabilidad

Resumen


La soldadura explosiva es aplicable en una amplia variedad de espesores, propiedades térmicas y mecánicas, por lo que tiene diferentes aplicaciones. En este trabajo, el compuesto de base de aluminio como refuerzo con alambre de acero Ck75 fue fabricado mediante soldadura explosiva. Los alambres de acero Ck75 se colocaron entre dos placas de aluminio. El alambre Steel Ck75 se utilizó para aumentar la resistencia del compuesto de base de aluminio. Los parámetros del proceso se evaluaron en detalle. La excelente calidad de unión de la interfaz sin vacíos se puede representar en imágenes de microscopio óptico. El intervalo de soldabilidad y la simulación con los datos experimentales confirmaron que los parámetros del material y del proceso estaban bien seleccionados. Los ensayos de tracción mostraron que el material compuesto reforzado mostró una resistencia mayor que el material compuesto no reforzado de aproximadamente un 8%.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Akbari Mousavi, S.A.A., Al-Hassani, S.T.S. (2008). Finite element simulation of explosively-driven plate impact with application to explosive welding. Mater. Design 29 (1), 1-19. https://doi.org/10.1016/j.matdes.2006.12.012

ASTM E8/E8M (2008). Standard test methods for tension testing of metallic materials. ASTM International, West Conshohocken, PA, USA.

Bhalla, A.K., Willams, J.D. (1977). Production of stainless-steel wire-reinforced aluminum composite sheet by explosive compaction. J. Mater. Sci. 12, 522-530. https://doi.org/10.1007/BF00540277

Deemyad, T., Moeller, R., Sebastian, A. (2020). Chassis Design and Analysis of an Autonomous Ground Vehicle (AVG) using Genetic Algorithm. Intermountain Engineering, Technology and Computing (IETC), 20154025. https://doi.org/10.1109/IETC47856.2020.9249180

Etemadi, E., Naseri, A., Valinezhad, M. (2020). Novel U-bending designed setups for investigating the spring-back/spring-go of two-layer aluminum/copper sheets through experimental tests and finite element simulations. Proceedings of the Institution of Mechanical Engineers, Part L, Design and Applications 234 (8), 1142-1153. https://doi.org/10.1177/1464420720930251

Gülenc, B., Kaya, Y., Durgutlu, A., Gülenc, I.T., Yildirim, M.S., Kahraman, N. (2016). Production of wire reinforced composite materials through explosive welding. Arch. Civ. Mech. Eng. 16 (1), 1-8. https://doi.org/10.1016/j.acme.2015.09.006

Guler, K.A., Kisasoz, A., Karaaslan, A. (2014). Investigation of Lost Foam Casted Aluminum Bimetal Microstructures. Mater. Test. 56 (9), 737-740. https://doi.org/10.3139/120.110625

Huagui, H., Jichao, W., Wenwen, L. (2017). Mechanical properties and reinforced mechanism of the stainless-steel wire mesh-reinforced Al-matrix composite plate fabricated by twin-roll casting. Adv. Mech. Eng. 9 (6), 1-9. https://doi.org/10.1177/1687814017716639

Khanzadeh, M.R., Bakhtiari, H., Seyedi, M., Ahmadi, H.R. (2017). Simulation and welding window of three layers explosively bonded AA5083 and AA1050 aluminum alloys to carbon steel. J. Energ. Mater. 12 (3), 139-152.

Khanzadeh Gharah, S.M., Khalaj, G., Pouraliakbar, H., Jandaghi, M.R., Dehnavi, A., Bakhtiari, H. (2018). Multilayer Cu/Al/Cu explosive welded joints: Characterizing heat treatment effect on the interface microstructure and mechanical properties. J. Manuf. Process. 35, 657-663. https://doi.org/10.1016/j.jmapro.2018.09.014

Los, I.S., Khorin, A.V., Troshkina, E.G., Guskov, M.S. (2010). Al-Cu composite by explosive welding. X international symposium on explosive production of new materials: Science, Technology, Business and Innovations (EPNM-2010). Bechichi, Montenegro, pp.1-14.

Mavhungu, S.T., Akinlab, E.T., Onitiri, M.A., Varachia, F.M. (2017). Aluminum Matrix Composites for Industrial Use: Advances and Trends. Procedia Manuf. 7, 178-182. https://doi.org/10.1016/j.promfg.2016.12.045

Narayan, S., Mori. A., Nishi, M., Hokamoto, K. (2019). Underwater shock wave weldability window for Sn-Cu plates. J. Mater. Process. Tech. 267, 152-158. https://doi.org/10.1016/j.jmatprotec.2018.11.044

Nassiri, A., Chini, G., Vivek, A., Daehn, G., Kinsey, B. (2015). Arbitrary Lagrangian-Eulerian finite element simulation and experimental investigation of wavy interfacial morphology during high velocity impact welding. Mater. Design 88, 345-358. https://doi.org/10.1016/j.matdes.2015.09.005

Pakzaman, H.R., Divandari, M. (2012). Effect of nickel coating on steel wire reinforcement on mechanical properties of aluminum matrix composites produced via lost foam casting. Proceeding of Iran International Aluminum Conference (IIAC2012). https://www.civilica.com/Paper-IIAC02-IIAC02_042.html.

Patterson, R. (1993). Fundamentals of explosion welding. ASM Handbook, pp. 60-164.

Ribeiro, J.B., Mendes, R., Loureiro, A. (2014). Review of the weldability window concept and equation for explosive welding. J. Phys. Conf. Ser. 500 (5), 052038. https://doi.org/10.1088/1742-6596/500/5/052038

Roudbari, M., Mehdipoor, A., Azarafza, R. (2013). Heat treatment of stainless steel 316L- titanium bimetal manufactured by explosive welding. IRJABS. 7 (10), 687-692. http://www.irjabs.com/files_site/paperlist/r_2003_140406222643.pdf.

Roudbari, M., Refahati, N., Mehdipour, A. (2020). Production of steel 1006 wire reinforced aluminum base composite by explosive welding. Rev. Metal. 56 (2), e165. https://doi.org/10.3989/revmetalm.165

Sharma, A.K., Bhandari, R., Aherwar, A., Rimašauskienė, R., Pinca-Bretotean, C. (2010). A. Study of advancement in application opportunities of aluminum metal matrix composites. Mater. Today Proc. 26 (Part. 2), 2419-2424. https://doi.org/10.1016/j.matpr.2020.02.516

Song, J., Raabe, D., Eggeler, G. (2011). Microstructure and properties of interfaces formed by explosion cladding of titanium to low carbon steel. Ph.D. Thesis, Ruhr-University Bochum, Germany.

Wagner, M.X. (2018). Light-Weight Aluminum-Based Alloys-From Fundamental Science to Engineering Applications. Metals 8 (4), 260. https://doi.org/10.3390/met8040260

Wang, Y., Beom, H. G., Sun, M., Liu, S. (2011). Numerical simulation of explosive welding using the material point method. Int. J. Impact Eng. 38 (1), 51-60. https://doi.org/10.1016/j.ijimpeng.2010.08.003

Yingbin, Liu., Chao, Li., Xiaoyan, Hu., Chufan, Y., Tiansheng, L. (2017). Explosive welding of copper to high nitrogen austenitic stainless steel. Metals 9 (3), 339. https://doi.org/10.3390/met9030339

Zakharenko, I., Zlobin, B. (1983). Effect of the hardness of welded materials on the position of the lower limit of explosive welding combust. Combust. Explos. Shock Waves 19, 689-692. https://doi.org/10.1007/BF00750461

Zamani, E., Lighat, G.H. (2012). Explosive welding of Stainless Steel-Carbon steel coaxial pipes. J. Mater. Sci. 47, 685-695. https://doi.org/10.1007/s10853-011-5841-9

Zarabimanesh, Y., Saffari, P.R., Saffari, P.R., Refahati, N. (2021) Hygro-thermo-mechanical vibration of two vertically aligned single-walled boron nitride nanotubes conveying fluid. Journal of Vibration and Control. https://doi.org/10.1177/10775463211006512

Zerui, S., Shi, Ch., Xu, F., Feng, K., Zhou, Ch., Wu, X. (2020). Detonation process analysis and interface morphology distribution of double vertical explosive welding by SPH 2D/3D numerical simulation and experiment. Mater. Design 191, 108630. https://doi.org/10.1016/j.matdes.2020.108630

Publicado

2021-06-28

Cómo citar

Roudbari, M. ., Refahati, N. ., & Mehdipou, A. . (2021). Mejora de las propiedades mecánicas del compuesto base de aluminio reforzado con alambre de acero Ck75 mediante soldadura explosiva. Revista De Metalurgia, 57(2), e196. https://doi.org/10.3989/revmetalm.196

Número

Sección

Artículos