Caracterización del comportamiento mecánico durante la fase de estricción de los aceros corrugados Tempcore 500C: experimentación y simulación
DOI:
https://doi.org/10.3989/revmetalm.199Palabras clave:
Análisis por elementos finitos, Acero Tempcore, Barras corrugadas de refuerzo, Ensayo de tracción, Estricción, FracturaResumen
El cálculo de los valores de tensión y deformación verdaderos en probetas cilíndricas de metales dúctiles durante la estricción ha sido ampliamente estudiado por diversos autores partiendo, en todos los casos, de una geometría simétrica del cuello. En este estudio se analiza la evolución del perfil del cuello en las barras corrugadas de los aceros Tempcore, proponiendo una metodología experimental mediante análisis en 3D. Conocer el verdadero comportamiento hasta rotura de este acero es de vital importancia para describir su respuesta ante situaciones límites. Los resultados experimentales obtenidos son comparados con los de barras cilíndricas de acero similar, siendo ambos validados mediante análisis por Elementos Finitos. Dicha comparativa permite comprobar que la existencia de corrugas implica una reducción de la deformación en rotura debido a la concentración de tensiones que se origina en zonas próximas al arranque de las mismas.
Descargas
Citas
Bridgman, P.W. (1944). The stress distribution at the neck of a tension specimen. Trans. Am. Soc. Met. 32, 553-574.
Bueno, R., Villegas, D. (2011). Ductility in reinforcing steel: New parameter and applications. Conference Proceedings for the 81st Annual Convention of the Wire Association International, 46, pp. 70-76.
Celentano, D.J., Cabezas, E.E., García, C.M., Monsalve, A.E. (2004). Characterization of the mechanical behaviour of materials in the tensile test: Experiments and simulation. Model. Simul. Mater. Sci. Eng. 12 (4), 425-444. https://doi.org/10.1088/0965-0393/12/4/S09
Celentano, D.J., Cabezas, E.E., García, C.M (2005). Analysis of the Bridgman procedure to characterize the mechanical behavior of materials in the tensile test: Experiments and simulation. J. Appl. Mech. Trans. 72 (1), 149-152. https://doi.org/10.1115/1.1827243
Chen, J.L. (1978). Study on metal fracture. Metallurgical Industry Press, Beijing.
Davidenkov, N.N., Spiridnova, N.I. (1946). Analisis of the state of stress in the neck of a tension specimen. Proceedings_American Soc. Test. Mater. 46, 1147-1158.
Donato, G.H., Ganharul, G.K. (2013). Methodology for the experimental assessment for true stress-strain curves after necking employing cylindrical tensile specimens: Experiments and parameters calibration. ASME 2013 Pressure Vessels and Piping Conference, Vol 6A, Paris. https://doi.org/10.1115/PVP2013-97993
Dong, S., Xian, A., Mohamed, H.S., Chen, Y., Yao, J. (2019). A Simplified Analytical Solution for the Necking Semi-Empirical Stresses based on Aramis System. KSCE J. Civ. Eng. 23 (1), 268-279. https://doi.org/10.1007/s12205-018-0307-0
Eisenberg, M.A., Yen, C.F. (1983). An anisotropic generalization of the bridgman analysis of tensile necking. J. Eng. Mater. Technol. 105 (4), 264-267. https://doi.org/10.1115/1.3225656
EN 1992-1-1 (2004). Design of concrete structures. European Committee for Standardization, Brussels.
EN 10080 (2005).Steel for the reinforcement of concrete. Weldable reinforcing steel. General. International Organization for Standardization, Geneva.
Ganharul, G.K., De Braganza Azevedo, N., Donato, G.H. (2012). Methods for the experimental evaluation of true stress-strain curves after necking of conventional tensile specimens: Exploratory investigation and proposals. ASME Pressure Vessels and Piping Conference 6, 163-172. https://doi.org/10.1115/PVP2012-78856
Genovese, K., Cortese, L., Rossi, M., Amodio, D. (2016). A 360-deg Digital Image Correlation system for materials testing. Opt. Lasers Eng. 82, 127-134. https://doi.org/10.1016/j.optlaseng.2016.02.015
Hahn, G.T., Rosenfield, A.R. (1975). Metallurgical factors affecting fracture toughness of aluminum alloys. Metall. Mater. Trans. A 6, 653-668. https://doi.org/10.1007/BF02672285
Hollomon, J.H., Jaffe, L.D. (1945). Time-temperature Relations in Tempering Steel. Trans. Am. Inst. Min. Eng. 162, 223-249.
Hortigón, B., Gallardo, J.M., Nieto-García, E.J., López, J.A. (2017). Elasto-plastic hardening models adjustment to ferritic, austenitic and austenoferritic Rebar. Rev. Metal. 53 (2), e094.
Hortigón, B., Gallardo, J.M., Nieto-García, E.J., López, J.A. (2019). Strain hardening exponent and strain at maximum stress: Steel rebar case. Constr. Build. Mater. 196, 175-184. https://doi.org/10.1016/j.conbuildmat.2018.11.082
ISO 15630-1 (2010). Steel for the reinforcement and prestressing of concrete. Test methods. Part 1: Reinforcing bars, wire rod and wire. International Organization for Standardization, Geneva.
ISO 6892-1 (2016). Metallic materials. Tensile testing. Part 1: Method of test at room temperature. International Organization for Standardization, Geneva.
Kamaya, M., Kawakubo, M. (2011). A procedure for determining the true stress-strain curve a large range of strains using digital image correlation and finite element analysis. Mech. Mater. 43 (5), 243-253. https://doi.org/10.1016/j.mechmat.2011.02.007
La Rosa, G., Risitano, A., Mirone, G. (2003). Postnecking elastoplastic characterization: Degree of approximation in the Bridgman method and properties of the flow-stress/true-stress ratio. Metall. Mater. Trans. A 34 (3), 615-624. https://doi.org/10.1007/s11661-003-0096-y
Le Roy, G., Embury, J.D., Edwards, G., Ashby, M.F. (1981). A Model of Ductile Fracture Based on the Nucleation and Growth of Voids. Acta Metall. 29 (8), 1509-1522. https://doi.org/10.1016/0001-6160(81)90185-1
Li, Z., Shi, J., Tang, A. (2013). Experimental verification and analysis for Bridgman formula. Chinese J. Appl. Mech. 30 (4), 488-492.
Ling, Y. (1996). Uniaxial True Stress-Strain after Necking. AMP J. Technol. 5, 37-48.
Mirone, G. (2004). Approximate model of the necking behaviour and application to the void growth prediction. Int. J. Damage Mech. 13 (3), 241-261. https://doi.org/10.1177/1056789504042592
Mirone, G., Verleysen, P., Barbagallo, R. (2019). Tensile testing of metals: Relationship between macroscopic engineering data and hardening variables at the semi-local scale. Int. J. Mech. Sci. 150, 154-167. https://doi.org/10.1016/j.ijmecsci.2018.09.054
Nadai, A. (1950). Theory of flow and fracture of solids. Vol. 1, Mc Graw-Hill, New York.
Norris, D.M., Moran, B., Scudder, J.K., Quiñones, D.F. (1978). A computer simulation of the tension test. J. Mech. Phys. Solids 26 (1), 1-19. https://doi.org/10.1016/0022-5096(78)90010-8
Paul, S.K., Majumdar, S., Kundu, S. (2014a). Low cycle fatigue behavior of thermo-mechanically treated rebar. Mater. Design 58, 402-411. https://doi.org/10.1016/j.matdes.2014.01.079
Paul, S.K., Rana, P.K., Das, D., Chandra, S., Kundu, S. (2014b). High and low cycle fatigue performance comparison between micro-alloyed and TMT rebar. Constr. Build. Mater. 54, 170-179. https://doi.org/10.1016/j.conbuildmat.2013.12.061
Rocha, M., Brühwiler, E., Nussbaumer, A. (2016). Geometrical and material characterization of quenched and self-tempered steel reinforcement bars. J. Mater. Civ. Eng. 28 (6), 04016012. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001355
Rossi, M., Cortese, L., Genovese, K., Lattanzi, A., Nalli, F., Pierron, F. (2018). Evaluation of Volume Deformation from Surface DIC Measurement. Exp. Mech. 58 (7), 1181-1194. https://doi.org/10.1007/s11340-018-0409-0
Valiente, A. (2000). On Bridgman's Stress Solution for a Tensile Neck Applied to Axisymmetrical Blunt Notched Tension Bars. J. Appl. Mech. 68 (3), 412-419. https://doi.org/10.1115/1.1360689
Zhu, F., Bai, P., Zhang, J., Lei, D., He, X. (2014). Measurement of true stress-strain curves and evolution of plastic zone of low carbon steel under uniaxial tension using digital image correlation. Opt. Lasers Eng. 65, 81-88. https://doi.org/10.1016/j.optlaseng.2014.06.013
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.
Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Consulte la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.