Biolixiviación en tanque de un concentrado de cobre utilizando los microorganismos moderadamente termofílicos Sulfobacillus thermosulfidoxidans KMM3 y Sulfobacillus acidophilus KMM26
DOI:
https://doi.org/10.3989/revmetalm.207Palabras clave:
Biolixiviación, Biorreactor, Concentrado de cobre, Termófilos moderadosResumen
Se ha investigado, a escala de laboratorio, el proceso de biolixiviación de un concentrado de cobre utilizando microorganismos termófilos moderados como una alternativa al proceso de fundición convencional; asimismo se han evaluado las condiciones experimentales óptimas para la extracción de cobre en términos de densidad de pulpa, pH y tamaño de partículas del concentrado cuprífero. La experimentación se llevó a cabo en un biorreactor de 5 l de capacidad. Y utilizando dos especies de Sulfobacillus. Los resultados mostraron que, después de 12 días, más del 80% del cobre se puede extraer del concentrado de calcopirita. Las condiciones óptimas para la extracción del metal fueron: una densidad de pulpa del 5% (p/v), un pH inicial de 1 y un tamaño de partícula (d80) de 45 µm. Los resultados de esta investigación contribuirán al diseño, por parte de la Compañía Iranian Babak Copper (IBCCO), de una planta industrial de biolixiviación en tanques de una capacidad anual de 50.000 t de cátodo de cobre.
Descargas
Citas
Acevedo, F., Gentina, J.C. (1989). Process Engineering Aspects of the Bioleaching of Copper Ores. Bioprocess Eng. 4, 223-229. https://doi.org/10.1007/BF00369176
Anderson, C., Giralico, M., Post, T., Robinson, T., Tinkler, O. (2002). Selection and Sizing of Biooxidation Equipment and Circuits. In: Mineral processing plant design, practice and control. Mular, A.L., Halbe, D.N., Barret, D.J. (eds.), Society of Mining Engineers, Littleton.
Biggs, S., Healy, T.W. (1994). Electrosteric stabilization of colloidal zirconia with low-molecular-weight polyacrylic-acid. An atomic-force microscopy study. J. Chem. Soc., Faraday Trans. 90 (22), 3415-3421. https://doi.org/10.1039/ft9949003415
Close, T. (2021). Kinetic analysis of leaching reactions in multi-component mineral systems. Ph. D. Thesis, Massachusetts Institute of Technology, Department of Chemical Engineering, pp. 167- 177.
Crundwell, F.K. (2015). The semiconductor mechanism of dissolution and the pseudo-passivation of chalcopyrite. Can. Metall. Q. 54 (3), 279-288. https://doi.org/10.1179/1879139515Y.0000000007
Derjaguin, B., Landau, L. (1993). Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Prog. Surf. Sci. 43 (1-4), 30-59. https://doi.org/10.1016/0079-6816(93)90013-L
Eftekhari, N., Kargar, M. (2018). Assessment of optimal iron concentration in the precipitation of jarosite and the activity of Acidithiobacillus ferrooxidans. Modares. Journal of Biotechnology 9 (4), 525-529.
Eftekhari, N., Kargar, M., Rokhbakhsh Zamin, F., Rastakhiz, N., Manafi, Z. (2020a). Bioremoval of iron ions from copper raffinate solution using biosynthetic jarosite seed promoted by Acidithiobacillus ferrooxidans. Rev. Metal. 56 (4), e182. https://doi.org/10.3989/revmetalm.182
Eftekhari, N., Kargar, M., Rokhbakhsh Zamin, F., Rastakhiz, N., Manafi, Z. (2020b). The catalytic activity of biological seeds and Acidithiobacillus ferrooxidans on the process of ammonium jarosite. Journal of Microbial World 12 (4), 355-363.
Eftekhari, N., Kargar, M., Rokhbakhsh Zamin, F., Rastakhiz, N., Manafi, Z. (2020c). A review on various aspects of jarosite and its utilization potentials. Ann. Chim. - Sci. Mat. 44 (1), 43-52. https://doi.org/10.18280/acsm.440106
Gilgannon, J., Fusseis, F., Menegon, L., Regenauer-Lieb, K., Buckman, J. (2017). Hierarchical creep cavity formation in an ultramylonite and implications for phase mixing. Solid Earth. 8 (6), 1193-1209. https://doi.org/10.5194/se-8-1193-2017
Hedrich, S, Joulian, C., Torsten Graupner, Schippers, A., Guézennec, A.G. (2018). Enhanced chalcopyrite dissolution in stirred tank reactors by temperature increase during bioleaching. Hydrometallurgy 179, 125-131. https://doi.org/10.1016/j.hydromet.2018.05.018
Hedrich, S., Schippers, A. (2021). Distribution of Acidophilic Microorganisms in Natural and Man-made Acidic Environments. Curr. Issues Mol. Biol. 40, 25-48. https://doi.org/10.21775/cimb.040.025 PMid:32159522
Johnson, D.B. (1995). Selective solid media for isolating and enumerating acidophilic bacteria. J. Microbiol. Methods 23 (2), 205-218. https://doi.org/10.1016/0167-7012(95)00015-D
Johnson, D.B., Hallberg, K.B. (2007). Techniques for detecting and identifying acidophilic mineral-oxidizing microorganisms. Rawlings, D., Johnson D. (Eds) Biomining, Springer, Berlin, Heidelberg: Springer Berlin Heidelberg. pp. 237-261. https://doi.org/10.1007/978-3-540-34911-2_12
Jones, G.C., Corin, K.C., Hille, R.P.V., Harrison, S,T.L. (2011). The generation of toxic reactive oxygen species (ROS) from mechanically activated sulphide concentrates and its effect on thermophilic bioleaching. Miner. Eng. 24 (11), 1198-1208. https://doi.org/10.1016/j.mineng.2011.05.016
Manafi, Z. (2021). Evaluation and improve the performance of moderate thermophiles in increasing of copper extraction from chalcopyrite concentrate. PhD thesis.
Marshall, C.E. (1949). Theory of the stability of lyophobic colloids. The interaction of sol particles having an electric double layer. Elsevier, pp. 413-414. https://doi.org/10.1002/pol.1949.120040321
Ñancucheo, I., Rowe, O.F., Hedrich, S., Johnson, D.B. (2016). Solid and liquid media for isolating and cultivating acidophilic and acid-tolerant sulfate-reducing bacteria. FEMS Microbiol. Lett. 363 (10), fnw083. https://doi.org/10.1093/femsle/fnw083 PMid:27036143
O'Connor, G.M., Eksteen, J.J. (2020). A critical review of the passivation and semiconductor mechanisms of chalcopyrite leaching. Miner. Eng. 154, 106401. https://doi.org/10.1016/j.mineng.2020.106401
Rasoulnia, P., Barthen, R., Lakaniemi, A.M. (2020). A critical review of bioleaching of rare earth elements: The mechanisms and effect of process parameters. Crit. Rev. Environ. Sci. Technol. 51 (4), 378-427. https://doi.org/10.1080/10643389.2020.1727718
Rawlings, D.E., Dew, D., du Plessis, C. (2003). Biomineralization of metal containing ores and concentrates. Trends Biotechnol. 21 (1), 38-44. https://doi.org/10.1016/S0167-7799(02)00004-5
Rawlings, D.E. (2008). High level arsenic resistance in bacteria present in biooxidation tanks used to treat gold-bearing arsenopyrite concentrates: A review. T. Nonferr. Metal. Soc. China 18 (6), 1311-1318. https://doi.org/10.1016/S1003-6326(09)60003-0
Smart, R.S.C., Jasieniak, M., Prince, K.E., Skinner, W.M. (2000). SIMS studies of oxidation mechanisms and polysulfide formation in reacted sulfide surfaces. Miner. Eng. 13 (8-9), 857-870. https://doi.org/10.1016/S0892-6875(00)00074-1
Tanne, C.K., Schippers, A. (2019). Electrochemical investigation of chalcopyrite (bio)leaching residues. Hydrometallurgy 187, 8-17. https://doi.org/10.1016/j.hydromet.2019.04.022
Tao, J., Liu, X., Luo, X., Teng, T., Jiang, C., Drewniak, L,, Yang, Z., Yin, H. (2021). An integrated insight into bioleaching performance of chalcopyrite mediated by microbial factors: Functional types and biodiversity. Bioresour Technol. 319, 124219. https://doi.org/10.1016/j.biortech.2020.124219
Wang, Y., Zeng, W., Qiu, G., Chen, X., Zhou, H. (2014). A moderately thermophilic mixed microbial culture for bioleaching of chalcopyrite concentrate at high pulp density. Appl. Environ. Microbiol. 80 (2), 741-750. https://doi.org/10.1128/AEM.02907-13 PMid:24242252 PMCid:PMC3911102
Wang, L., Yin, Sh; Wu, A., Chen, W. (2019). Synergetic bioleaching of copper sulfides using mixed microorganisms and its community structure succession. J. Clean. Prod. 245, 118689. https://doi.org/10.1016/j.jclepro.2019.118689
Wang, X., Ma, L., Wu, J., Xiao, Y., Tao, J., Liu, X. (2020). Effective bioleaching of low-grade copper ores: Insights from microbial cross experiments. Bioresour. Technol. 308, 123273. https://doi.org/10.1016/j.biortech.2020.123273 PMid:32247948
Webster, G., Newberry, C.J., Fry, J.C., Weightman, A.J. (2003). Assessment of bacterial community structure in the deep sub-seafloor biosphere by 16S rDNA-based techniques: a cautionary tale. J. Microbiol. Methods 55 (1), 155-164. https://doi.org/10.1016/S0167-7012(03)00140-4
Zhang, R., Hedrich, S., Jin, D., Breuker, A., Schippers, A. (2021). Sulfobacillus harzensis sp. nov., an acidophilic bacterium inhabiting mine tailing from a polymetallic mine. Int. J. Syst. Evol. Microbiol. 71 (7), 004871. https://doi.org/10.1099/ijsem.0.004871 PMid:34236956 PMCid:PMC8489842
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.
Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Consulte la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.