Revista de Metalurgia, Vol 53, No 4 (2017)

La eliminación de metales tóxicos presentes en efluentes líquidos mediante resinas de cambio iónico. Parte V: níquel(II))/H+/Dowex C400


https://doi.org/10.3989/revmetalm.105

Francisco José Alguacil
Centro Nacional de Investigaciones Metalúrgicas (CENIM-CSIC) , España
orcid http://orcid.org/0000-0002-0247-3384

Resumen


Se ha empleado la resina de intercambio catiónico Dowex C400 en la eliminación de níquel(II) de disoluciones acuosas de distintos valores de pH y en varias condiciones experimentales: velocidad de agitación del sistema acuoso/resina, temperatura, dosificación de la resina y disoluciones acuosas de distinta fuerza iónica, investigándose la eliminación del níquel de medios acuosos que contenían varios metales, así como las posibilidades de la resina frente a la utilización de otros potenciales adsorbentes como son los nanotubos de carbono de pared múltiple y los nanotubos de carbono de pared múltiple funcionalizados con grupos carboxílicos. Los resultados experimentales indican que la carga del níquel(II) en la resina responde al modelo de Freundlich, mientras que los modelos cinéticos y de control indican que el proceso de intercambio catiónico responde al modelo de pseudo-primer orden y núcleo recesivo. La elución del níquel(II) se realiza con disoluciones acidas.

Palabras clave


Dowex C400; Efluentes líquidos; Eliminación; Níquel(II); Nanotubos de carbono de pared múltiple

Texto completo:


HTML PDF XML

Referencias


Alguacil, F.J. (2002). The removal of toxic metals from liquid effluents by ion exchange resins. Part II: cadmium(II)/sulphate/Lewatit TP260. Rev. Metal. 38 (5), 348–352. https://doi.org/10.3989/revmetalm.2002.v38.i5.418

Alguacil, F.J. (2003). The removal of toxic metals from liquid effluents by ion exchange resins. Part III: copper(II)/sulphate/Amberlite 200. Rev. Metal. 39 (3), 205–209. https://doi.org/10.3989/revmetalm.2003.v39.i3.330

Alguacil, F.J. (2017). The removal of toxic metals from liquid effluents by ion exchange resins. Part IV: chromium(III)/H+/Lewatit SP112. Rev. Metal. 53 (2), e093.

Alguacil, F.J., Coedo, A.G., Dorado, T., Padilla, I. (2002). The removal of toxic metals from liquid effluents by ion exchange resins. Part I: chromium(VI)/sulphate/Dowex 1x8. Rev. Metal. 38 (4), 306–311. https://doi.org/10.3989/revmetalm.2002.v38.i4.412

Alguacil, F.J., López, F.A., Rodríguez, O., Martinez-Ramirez, S., García-Díaz, I. (2016). Sorption of indium (III) onto carbon nanotubes. Ecotox. Environ. Safe. 130, 81–86. https://doi.org/10.1016/j.ecoenv.2016.04.008 PMid:27085001

Alonso, M., López-Delgado, A., Sastre, A.M., Alguacil, F.J. (2006). Kinetic modeling of the facilitated transport of cadmium (II) using Cyanex 923 as ionophore. Chem. Eng. J. 118 (3), 213–219. https://doi.org/10.1016/j.cej.2006.02.006

AlOmar, M.K., Alsaadi, M.A., Jassam, T.M., Akib, S., Hashim, M.A. (2017). Novel deep eutectic solvent-functionalized carbon nanotubes adsorbent for mercury removal from water. J. Colloid. Interf. Sci. 497, 413–421. https://doi.org/10.1016/j.jcis.2017.03.014 PMid:28314146

Drasinac, N., Erjavec, B., Drazic, G., Pintar, A. (2017). Peroxo and gold modified titanium nanotubes for effective removal of methyl orange with CWPO under ambient conditions. Catal. Today 280 (Part 1), 155–164. https://doi.org/10.1016/j.cattod.2016.06.038

El-Bahy, S.M., El-Bahy, Z.M. (2016). Síntesis and characterization of polyamidoxime chelating resin for adsoprtion of Cu(II), Mn(II) and Ni(II) by batch and column study. J. Environ. Chem. Eng. 4 (1), 276–286. https://doi.org/10.1016/j.jece.2015.10.040

Guan, Q.-J., Sun, W., Zhou, G,.Y., Liu, J.-P., Yin, Z.-G. (2016). Recovery of cobalt and nickel in the presence of magnesium and calcium from sulfate solutions by Versatic 10 and mixtures of Versatic 10 and Cyanex 301. T. Nonferr. Metal. Soc. China 26 (3), 865–873. https://doi.org/10.1016/S1003-6326(16)64178-X

Jain, C.K., Malik, D.S., Yadav, A.K. (2016). Applicability of plant based biosorbents in the removal of heavy metals: a review. Environ. Proc. 3 (2), 495–523. https://doi.org/10.1007/s40710-016-0143-5

Kim, J., Kwak, S.-Y. (2017). Efficient and selective removal of heavy metals using microporous layered silicate AMH-3 as sorbent. Chem. Eng. J. 313, 975–982. https://doi.org/10.1016/j.cej.2016.10.143

López Díaz-Pavón, A., Cerpa, A., Alguacil, F.J. (2014). Processing of indium(III) solutions via ion exchange with Lewatit K-2621 resin. Rev. Metal. 50 (2), e010. https://doi.org/10.3989/revmetalm.010

Melo, D.D.Q., Vidal, C.B., Medeiros, T.C., Raulino, G.S.C., Dervanoski, A., Pinheiro, M.D.C., Nascimento, R.F.D. (2016). Biosorption of metal ions using a low cost modified adsorbent (Mauritia flexuosa): experimental design and mathematical modeling. Environ. Technol. 37 (17), 2157–2171. https://doi.org/10.1080/09593330.2016.1144796 PMid:26950526

Moghbeli, M.R., Khajeh, A., Alikhani, M. (2017). Nanosilica reinforced ion-exchange polyHIPE type membrane for removal of nickel ions: Preparation, characterization and adsorption studies. Chem. Eng. J. 309, 552–562. https://doi.org/10.1016/j.cej.2016.10.048

Ogden, M.D., Moon, E.M., Wilson, A., Pepper, S.E. (2017). Application of chelating weak base resin Dowex M4195 to the recovery of uranium from mixed sulfate/chloride media. Chem. Eng. J. 317, 80–89. https://doi.org/10.1016/j.cej.2017.02.041

Otrembska, P., Gega, J. (2016). Separation of nickel(II) and cadmium(II) ions with ion-exchange and membrane processes. Sep. Sci. Technol. 51 (15-16), 2675–2680. https://doi.org/10.1080/01496395.2016.1171784

Taha, A.A., Shreadah, M.A., Heiba, H.F., Ahmed, A.M. (2017). Validity of Egyptian Na-montmorillonite for adsorption of Pb2+, Cd2+ and Ni2+ under acidic conditions: Characterization, isotherm, kinetics, thermodynamics and application study. Asia-Pac. J. Chem. Eng. 12 (2), 292–306. https://doi.org/10.1002/apj.2072

USEPA (2017). Reports National primary and secondary drinking water standards. www.epa.gov (checked 6 september 2017).

Wang, Y., Liu, R. (2017). Comparison of characteristics of twenty-one types of biochar and their ability to remove multi-heavy metals and methylene blue in solution. Fuel Process. Technol. 160, 55–63. https://doi.org/10.1016/j.fuproc.2017.02.019

Yousef, N.S., Farouq, R., Hazzaa, R. (2016). Adsorption kinetics and isotherms for the removal of nickel ions from aqueous solutions by an ion-exchange resin: application of two and three parameters isotherm models. Desalin. Water Treat. 57 (46), 21925–21938. https://doi.org/10.1080/19443994.2015.1132474

Zhang, J., Chen, Y. (2016). Uptake of Fe(III), Ag(I), Ni(II) and Cu(II) by salicyl acid-type chelating resin prepared via surface-initiated atom transfer radical polymerization. RSC Adv. 6 (73), 69370–69380. https://doi.org/10.1039/C6RA11101G




Copyright (c) 2017 Consejo Superior de Investigaciones Científicas (CSIC)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento 4.0 Internacional.


Contacte con la revista revista@cenim.csic.es

Soporte técnico soporte.tecnico.revistas@csic.es