Mechanical milling of a nanostructured ductile iron powder under dry, wet and cryogenic atmospheres


  • N. Cinca Centre de Projecció Tèrmica (CPT). Universitat de Barcelona
  • E. Hurtado Centre de Projecció Tèrmica (CPT). Universitat de Barcelona
  • I. G. Cano Centre de Projecció Tèrmica (CPT). Universitat de Barcelona
  • J. M. Guilemany Centre de Projecció Tèrmica (CPT). Universitat de Barcelona



Mechanical milling, Plastic deformation, Nanostructure, XRD, Scanning electron microscopy


The main objective of this study, is to obtain an effective particle and grain size reduction of a nanostructured iron powder by mechanical milling under different milling media. One of the main challenges in this study is to work with this material of great ductility.The variables of the study to be optimized have been the following: speed of rotation, powder to ball ratio (PBR) and the percentage of control agent to induce an effective powder fracturing in front of cold welding. The powder has been characterized by a Laser Diffraction Particle Size Analyser, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) and, X-ray diffraction.Through the comparative study, it is found that operating under dry milling conditions: there is a more effective particle size reduction of 43 % and grain size reduction of 62 %. In wet conditions has been reduced the amount of oxide, as well as to obtain a more homogenous distribution of the resulting powder. The results under cryogenic media is presented as promising.


Download data is not yet available.


[1] L. Austin y F. Concha: “Diseño y simulación de circuitos de molienda y clasificación”, Universidad Técnica Federico Santa María Ediciones, 1ª Ed., Chile 1994, pp. 1-174.

[2] A. Zaluska, L. Zaluski y J.O. Ström-Olsen, J. Alloy. Compd. 288 (1999) 217-225.

[3] D.L. Huber, Small 5 (2005) 482-501. PMid:17193474

[4] L. Li, M. Fan, R.C. Brown, J. (Hans) Van Leeuwen, J. Wang, W. Wang, Y. Song y P. Zhang, Critical Reviews, Environ. Sci. Technol. 36 (2006) 405-431.

[5] B. Cullity, Introduction to magnetic materials, Addison-Wesley, Reading, Massachussetts: Addison-Wesley Publishing Company (1972).

[6] M.E. McHenry, M.A. Willard y D.E. Laughlin, Prog. Mater. Sci. 44 (1999) 291-433.

[7] K. Takadate, A. Kojima, A. Makino y A. Inoue, Scripta. Mater. 44 (2001) 1.401-1.405.

[8] S. Takaki, K. Kawasaki e Y. Kimura, J. Mater. Proc. Technol. 117 (2001) 359-363.

[9] T.R. Malow y C.C. Koch, Metal. Mater. Trans. A, 29A (1998) 2.285-2.295.

[10] J.J. Suñol, A. González, L. Escoda y M.T. Mora, Rev. Metal. Madrid 44 (2008) 216-221.

[11] C. Suryanarayana, Prog. Mater. Sci. 46 (2001) 1-184.

[12] D. Chen, S. Ni y Z. Chen, China Particuology 5 (2007) 357-358.

[13] E.J. Lavernia, B.Q. Han y J.M. Schoenung, Mater. Sci. Eng. A 493 (2008) 207-214.

[14] D.B. Witkin y E. J. Lavernia, Prog. Mater. Sci. 51 (2006) 1-60.

[15] L. Cabrera, S. Gutierrez, N. Menéndez, M.P. Morales, P. Herrasti, Magnetite nanoparticles: Electrochemical synthesis and characterizacio, Electrochemica, Acta 53, 8 (2008) 3.436-3.441.




How to Cite

Cinca, N., Hurtado, E., Cano, I. G., & Guilemany, J. M. (2011). Mechanical milling of a nanostructured ductile iron powder under dry, wet and cryogenic atmospheres. Revista De Metalurgia, 47(3), 197–204.




Most read articles by the same author(s)

1 2 > >>