Evaluation of structural changes in WC10Ni coatings deposited by laser cladding on tool steel EN 12379


  • J. J. Candel Instituto de Tecnología de Materiales, Universidad Politécnica de Valencia
  • V. Amigó Instituto de Tecnología de Materiales, Universidad Politécnica de Valencia
  • J. Sampedro Instituto Tecnológico de Óptica, Color e Imagen (AIDO)
  • V. Bonache Instituto de Tecnología de Materiales, Universidad Politécnica de Valencia




Laser cladding, Tool steel, WC cermet, Microstructure


Carbide metal matrix composite materials are known for a high resistance to all types of wear. It is due to a beneficial combination of properties given by hard phase particles included in a tough matrix. Different kinds of those materials have been employed in the development of new high properties cutting tools. Laser cladding (LC) technique allows obtaining an accurate defect-free coating with a low thermal affectation of the component. But in the case of WC cermet coatings due to its high laser absorption and the different mechanical and thermal properties between substrate and coating can appear a wide range of different defects as cracks, pores, massive carbide dilution and lacks of adherence. The aim of the present work is to study the metallurgical transformations during LC process of WC cermet coating on cold work tool steel substrate (EN 12379). Also it has been related process parameters with defects generation. Microstructure and composition of the coating and the heat affected zone have been analysed. Microhardness evolution profile has been obtained. Results show that although process parameters control reduce the generation of defects, in the deposition of overlapped layers appear different metallurgical transformations related with massive WC decomposition and the diffusion of alloying elements from substrate to the coating.


Download data is not yet available.


[1] H. Zhang, G. Wang, Y. Luo y T. Nakaga, Thin Solid Films 390 (2001) 7-12. http://dx.doi.org/10.1016/S0040-6090(01)00910-5

[2] P. Cadenas, M. Rodriguez, y M. H. Staia, Rev. Metal. Madrid 43 (2007) 50-62.

[3] R. Vilar, J. Laser. Appl. 11, 64-79. http://dx.doi.org/10.2351/1.521888

[4] I. Vicario, C. Soriano, C. Sanz, R. Bayón y J. Leunda, Rev.Metal. Madrid 45 (2009) 14-19.

[5] Z. Chen, L. Lim y M. Qian, J. Mater. Process. Tech. 62 (1996) 321-323. http://dx.doi.org/10.1016/S0924-0136(96)02447-8

[6] M.J. Tobar, C. Álvarez, J.M. Amado, G. Rodríguez y A. Yáñez, Surf. Coat. Tech. 200 (2006) 6.313-6.317.

[7] L.C. Lim, Q. Ming y Z. Chen, Surf. Coat. Tech. 106 (1998) 183-192. http://dx.doi.org/10.1016/S0257-8972(98)00525-8

[8] P. Wang, J. Qu y H. Wang, Mater. Design, 17 (1996) 289-296. http://dx.doi.org/10.1016/S0261-3069(97)00025-3

[9] A. Hidouci, J.M. Pelletier, F. Ducoin, D. Dezert y R. Guerjouma, Surf. Coat. Tech. 123 (2000) 17-23. http://dx.doi.org/10.1016/S0257-8972(99)00394-1

[10] Y. Xianqing, Z. Chengjun y S. Xuefeng, Appl. Surf. Sci. 253 (2007) 4.409-4.414.

[11] M. Riabkina y E. Rabkin, J. Mater. Sci. letters 20(2001) 1.917- 1.920.

[12] S.W. Huang, M. Samandi y M. Brandt, Wear 256 (2004) 1.095-1.105.

[13] B.S. Sidhu y D. Puri, J. Mater. Proc. Tech. 159 (2005) 347-355. http://dx.doi.org/10.1016/j.jmatprotec.2004.05.023

[14] L. St-Georges, Wear 263 (2007) 562-566. http://dx.doi.org/10.1016/j.wear.2007.02.023

[15] J. Przybylowiz, J. Mater. Proc. Tech. 109 (2001) 154-160. http://dx.doi.org/10.1016/S0924-0136(00)00790-1

[16] P. Wu, H.M. Du, X.L. Chen, Z.Q. Li y H.L. Bai, Wear 257 (2004) 142-147. http://dx.doi.org/10.1016/j.wear.2003.10.019

[17] M. Cadenas, J. M. Cuetos, J. E. Fernández, M.R. Fernández, L. M. Vega y J. de Dambo re - nea, Rev. Metal. Madrid 38 (2002) 457-463. 364 rev.




How to Cite

Candel, J. J., Amigó, V., Sampedro, J., & Bonache, V. (2011). Evaluation of structural changes in WC10Ni coatings deposited by laser cladding on tool steel EN 12379. Revista De Metalurgia, 47(4), 355–364. https://doi.org/10.3989/revmetalm.0964




Most read articles by the same author(s)

1 2 3 > >>