Study of sulphate-reducing bacteria corrosion in the weld joint for API X-70 steel


  • J. E. Flores Facultad de Ingeniería, Universidad Autónoma del Carmen
  • C. Patiño-Carachure Facultad de Ingeniería, Universidad Autónoma del Carmen
  • I. Alfonso Facultad de Ingeniería, Universidad Autónoma del Carmen
  • J. A. Rodríguez Centro de Investigación en Ingeniería y Ciencias Aplicadas, Universidad Autónoma del Estado de Morelos
  • G. Rosas Instituto de Investigaciones Metalúrgicas, Universidad Michoacana de San Nicolás de Hidalgo



Corrosion, API X-70, HAZ, Sulphate-reducing-bacteria, MIC


The corrosion behavior originated by sulfate-reducing bacteria (SRB) was studied in two regions of welded API X-70 steel pipeline. The studies were focused on base material (BM) and heat affected zone (HAZ), from the internal region of the pipe. SRB were extracted from oil and grown in a Postgate medium. Corrosion was evaluated at 60 °C for times between 5 and 64 days. Potentiodynamic polarization curves, obtained by electrochemical techniques, indicated surface activation at short times. Structural and morphological characterizations were carried out by scanning electron microscopy (SEM) and optical microscopy (OM). H2S concentration and pH were also measured. Results showed an important increase in the corrosion damage up to 20 days, influenced by the SRB activity, which lead to a maximum of H2S (pH minimum). It was found a localized corrosion attack in the HAZ in a higher quantity compared to BM; and the formation of a thin film on the steel surface, originated by corrosion products and bacterial activity.


Download data is not yet available.


[1] R. P. George, D. Marshall and R. C. Newman, Corros. Sci. 45 (2003) 1999-2015.

[2] J. Luo and I. Vance, Proc. "Corrosion",Houston TX, NACE, paper 265, 1994, pp. 2-4.

[3] R. Javaherdashti, Anti-Corros. Method M. 46 (1999) 173-180.

[4] R. Torres-Sánchez, J. García-Vargas, A. Alfonso-Alonso and L. Martínez-Gómez, Mater. Corros. 52 (2001) 614-618.<614::AID-MACO614>3.0.CO;2-G

[5] A. K. Lee, M. G. Buehler and D. K. Newman, Corros. Sci. 48 (2006) 165-178.

[6] D. H. Pope, Proc. "Corrosion", Houston. TX, NACE, paper 265, 2000, pp. 2-4.

[7] M. Rodríguez-Hernández, R. Galván-Martínez, R. Orozco-Cruz, E. A. Martínez and R. Torres-Sánchez, Mater. Corros. 60 (2009) 982-986.

[8] J. W. Costerton, G. G. Geesey and P. A. Jones., Proc. "Corrosion", San Francisco, CA, NACE, paper 54, 1987.

[9] P. Nelson and J. R. Stile, Met. Mater. 9 (1988) 559-564.

[10] R. E. Tatnall, A Practical Manual on Microbiologically Influenced Corrosion, Ed. G. Kobrin, NACE International, Houston, Tex., 1993, pp. 101-112.

[11] L. Garverick,Corrosion in the petrochemical industry, ASM International, Metals Park, 1994, p. 23.

[12] M. Ronald, Handbook of Microbiological Media, Ed. by Lawrence C. Parks, 1996, 746.

[13] M. Ruscak and T. P. Perng., J. Mater. Sci. Technol. 1 (1993) pp. 1-5.

[14] V. A. Alves, A. M., Chiorcea Paquim, A. Cavaleiro and C. M. A. Brett., Corros. Sci. 47 (2005) 2871-2882.

[15] H. An-Guo, L. Zhi-Yuan, Y. Sheng-Fu, Z. Long-Zao, Z. Guo-Dong, Trans China Weld Inst. 11 (2005) 123-126.




How to Cite

Flores, J. E., Patiño-Carachure, C., Alfonso, I., Rodríguez, J. A., & Rosas, G. (2012). Study of sulphate-reducing bacteria corrosion in the weld joint for API X-70 steel. Revista De Metalurgia, 48(5), 325–332.