Degradation process modelization in of metallic drink containers, in soil, in water and in water-soil interaction

Authors

  • I. Rieiro Dpto. de Matemáticas. Facultad de Ciencias del Medio Ambiente. Universidad de Castilla-La Mancha
  • V. Triviño Dpto. de Matemáticas. Facultad de Ciencias del Medio Ambiente. Universidad de Castilla-La Mancha
  • T. Gutiérrez Dpto. de Matemáticas. Facultad de Ciencias del Medio Ambiente. Universidad de Castilla-La Mancha
  • J. Muñoz Dpto. de Matemáticas. Facultad de Ciencias del Medio Ambiente. Universidad de Castilla-La Mancha
  • M. T. Larrea Dpto. de Metalurgia Física, Centro Nacional de Investigaciones Metalúrgicas (CSIC)

DOI:

https://doi.org/10.3989/revmetalm.1322

Keywords:

Pollution, Tin can, Aluminum can, Water, Soil, ICP-OES, Modelization

Abstract


This study asses the environmental pollution by metal release that takes place during prolonged exposures when metallic drink containers are accidentally settle in the soil in a uncontrolled way, For comparative purposes, the F111 steel and the aluminium alloy 3003, widely used for the fabrication of these containers, are also considered. A experimental design is proposed to simulate the environmental pollution during prolonged exposures. Analytical indicators have been obtained determining the metallic concentration from three types of mediums; water, water in presence of soil, and absorption-adsorption in soil. An analytical methodology has been developed by Atomic Emission Spectrometry with ICP as exciting source (ICP-OES) for metallic quantification. The method was validated using Certified Reference Materials (CRMs) of soil and water and the precision obtained varies from 5.39 to 5.86% and from 5.75 to 6.27%, respectively according to of the element studied. A statistical descriptive study followed by a factorial analysis (linear general model) has been carried out for the treatment of the experimental data packages. The metallic quantification for the three mediums shows that the soil inhibits metallic solubility in water. The process to make packages reduces in both cases their metallic cession.

Downloads

Download data is not yet available.

References

[1] C. Baird y M. Cann, Environmental Chemistry 4e, Ed. W.H. Freeman and Company, New York, EE.UU., 2008, pp. 557-578 y 661-663.

[2] D.C. Adriano, Trace elements TS in the Terrestrial Environment, Ed. Springer Verlag, New York, EE.UU., 1986, pp. 533-540.

[3] Mª.I. Sánchez Bascones, Tesis Doctoral, Facultad de Ciencias, Universidad Valladolid, España, 2003, pp. 8-16.

[4] G. Sposito, The chemistry of soil, Oxford University Press, New York, EE.UU., 2008, pp. 195-218.

[5] www.latamania.coHYPERLINK http://www.latamania.com/.

[6] H.I. Scheinberg, Metals and their Compounds in the Environment: Occurrence, Analyses and Biological Relevance. Copper, Ed. Merian, E.VCH, New York, Basel, Cambridge, 1991, pp. 803-851.

[7] M. Juárez Sanz, J. Sánchez Andreu, y A. Sánchez Sánchez, Química del suelo y medio ambiente, Publisher Digitalia, 2006.

[8] P.W.J.M. Boumans, Inductively Coupled Plasma Atomic Emission Spectrometry, Part I: Methodology, Instrument and Performance, Part 1: Introduction to atomic emission spectrometry, pp. 358-417, Part 2: Applications: Metals and industrial Materials, 1987, pp. 48-64, Ed. John Wiley & Sons, 1987.

[9] R. Harichandan, S. Routroy, J.K. Mohanty y C.R. Panda, Enviromental monitoring Assessment 185 (2013) 3.503-3.516.

[10] Y. Crouau y E. Pinelli, Ecotoxicology and Environmental Safety 71 (2008) 643-649. http://dx.doi.org/10.1016/j.ecoenv.2008.01.017

[11] N. James Miller y C. Jane Miller, Estadística y Quimiometría para Química Analítica, Ed. Prentice Hall-Pearson Educación, S.A., Madrid, España, 2002, pp. 1-41.

[12] R. Wayne Ott, Environmental Statistic and Data Analysis, Chapter 3: Analysis of observed data, pp. 46-71, Chapter 7: Normal Process, pp. 164-188, Chapter 8: Dilution of Pollutans, pp. 172-244, CRC Press, 1994.

[13] D.T. Kaplan, Statistical Modelling, CSIPP, 2009.

[14] C. Pérez, Estadística aplicada a través de Excel, Ed. Prentice Hall-Pearson Educación, S.A., Madrid, España, 2002, pp. 35-100 y 119-164.

[15] C. Pérez, Técnicas estadísticas con SPSS, Ed. Prentice Hall-Pearson Educación, S.A., Madrid, España, 2001.

[16] R. Serrano Gallego, Introducción al análisis de datos experimentales: Tratamiento de datos en Bioensayos, Capitulo 2: Estadística básica, pp. 19-42,Capítulo 4: El Análisis de la Varianza, pp. 67-82, Capitulo 7: Diseño Experimental y tratamiento de datos en Bioensayos, pp. 145-160, Ed. Pub. de la Universitat Jaume, Castellón de la Plana, España, 2003.

[17] P.M. Berthouex y L.C. Brown. Statistics for Environmental Engineers, Ed. Lewis Publishers, Florida, EE.UU., 2002.

[18] D.C. Montgomery, Design and Analysis of Experiments, Chapter 3: Experiments with a Single Factor: The Analisys of Variance, pp. 60-119, Chapter 5: Introduction to Factorial Designs, pp. 170-211, Model adequacy checking, pp. 76-86, Ed. Limusa - Wiley, Reino Unido, 2005.

[19] CITAC/Eurachem Working Group, Eurachem guide. Guide to Quality in Analytical Chemistry, 2002, pp. 23-29.

Downloads

Published

2013-12-30

How to Cite

Rieiro, I., Triviño, V., Gutiérrez, T., Muñoz, J., & Larrea, M. T. (2013). Degradation process modelization in of metallic drink containers, in soil, in water and in water-soil interaction. Revista De Metalurgia, 49(6), 423–437. https://doi.org/10.3989/revmetalm.1322

Issue

Section

Articles

Most read articles by the same author(s)

1 2 > >>