Analysis of spinodal decomposition in Fe-32 and 40 at.% Cr alloys using phase field method based on linear and nonlinear Cahn-Hilliard equations
DOI:
https://doi.org/10.3989/revmetalm.078Keywords:
Cahn-Hilliard equations, Fe-Cr alloys, Phase field method, Spinodal decompositionAbstract
Spinodal decomposition was studied during aging of Fe-Cr alloys by means of the numerical solution of the linear and nonlinear Cahn-Hilliard differential partial equations using the explicit finite difference method. Results of the numerical simulation permitted to describe appropriately the mechanism, morphology and kinetics of phase decomposition during the isothermal aging of these alloys. The growth kinetics of phase decomposition was observed to occur very slowly during the early stages of aging and it increased considerably as the aging progressed. The nonlinear equation was observed to be more suitable for describing the early stages of spinodal decomposition than the linear one.
Downloads
References
Bonny, G., Terentyev, D., Malerba, L. (2008). On the Éø-ÉøÅL miscibility gap of Fe-Cr alloys. Scripta Mater. 59 (11), 1193-1196. https://doi.org/10.1016/j.scriptamat.2008.08.008
Brenner, S.S, Miller, M.K., Soffa, W.A. (1982). Spinodal decomposition of iron-32at.% chromiun at 470°C. Scripta Metall. Mater. 16 (7), 831-836. https://doi.org/10.1016/0036-9748(82)90239-3
Cahn, J.W. (1966). The later stages of spinodal decomposition and the beginnings of particle coarsening. Acta Metall. Mater. 14 (12), 1685-1692. https://doi.org/10.1016/0001-6160(66)90021-6
Cahn, J.W., Hilliard, J.E. (1958). Free energy of a nonuniform system. I. interfacial free energy. J. Chem. Phys. 28 (2), 258-267. https://doi.org/10.1063/1.1744102
Cahn, J.W., Hilliard, J.E. (1971). Spinodal decomposition: A reprise. Acta Metall. Mater. 19 (2), 151-161. https://doi.org/10.1016/0001-6160(71)90127-1
Danoix, F., Auger, P. (2000). Atom probe studies of the Fe-Cr system and stainless steels aged at intermediate temperature: A review. Mater. Charact. 44 (1-2), 177 -201. https://doi.org/10.1016/S1044-5803(99)00048-0
Dieter, G.E. (1988). Mechanical Metallurgy: SI Metric Edition, McGraw-Hill, London. pp. 17-68.
Dongsheng, C., Akihiko, K., Wentuo, H. (2014). Correlation of Fe/Cr phase decomposition process and age-hardening in Fe-15Cr ferritic alloys. J. Nucl. Mater. 455 (1-3), 436-439. https://doi.org/10.1016/j.jnucmat.2014.07.069
Dubiel, S.M., Zukrowski, J. (2013). Fe-rich border and activation energy of phase decomposition in a Fe-Cr alloy. Mater. Chem. Phys. 141 (1), 18-21. https://doi.org/10.1016/j.matchemphys.2013.05.023
Hilliard, J.E. (1970). Spinodal Decomposition. In: Phase transformations. ASM, USA, pp. 497-539.
Honjo, M., Saito, Y. (2000). Numerical simulation of phase separation in Fe-Cr binary and Fe-Cr-Mo ternary alloys with use of the Cahn-Hilliard equation. ISIJ Int. 40 (9), 914-919. https://doi.org/10.2355/isijinternational.40.914
Hyde, J.M., Miller, M.K., Hetherington, M.G., Cerezo, A., Smith, G.D.W., Elliott, C.M. (1995). Spinodal decomposition in Fe-Cr alloys: experimental study at the atomic level and comparison with computer models-II. Development of domain size and composition amplitude. Acta Metall. Mater. 43 (9), 3403-3413. https://doi.org/10.1016/0956-7151(95)00042-t
Jing, Z., Joakim, O., Mattias, T., Peter, H. (2013). Quantitative evaluation of spinodal decomposition in Fe-Cr by atom probe tomography and radial distribution function analysis. Microsc. Microanal. 19 (3), 665-675. https://doi.org/10.1017/S1431927613000470 PMid:23642804
Kostorz, G. (2001). Phase Transformations in Materials, Spinodal Decomposition. Wiley-VCH, Germany, pp. 409-480. https://doi.org/10.1002/352760264X
La Salle, J.C., Schwartz, L.H. (1986). Further studies of spinodal decomposition in Fe-Cr. Acta Metall. Mater. 34 (6), 989-1000. https://doi.org/10.1016/0001-6160(86)90208-7
Malerba, L., Bonny, G., Terentyev, D., Zhurkin, E.E., Hou, M., Vörtler, K., Nordlund, K. (2013). Microchemical effects in irradiated Fe-Cr alloys as revealed by atomistic simulation. J. Nucl. Mater. 442 (1-3), 486-498. https://doi.org/10.1016/j.jnucmat.2012.12.038
Martínez, E., Senninger, O., Fu, Ch., Soisson, F. (2012). Decomposition kinetics of Fe-Cr solid solutions during thermal aging. Phys. Rev. B 86 (12), Id. 224109. https://doi.org/10.1103/physrevb.86.224109
Mehrer, H. (1990). Diffusion in Solid Metals and Alloys. Landolt-Bornstein, Numerical Data and Functional Relationships in Science and Technology. Group III: Crystal and Solid State Physics. Vol. 26, Springer-Verlag, Germany, pp. 32-80. https://doi.org/10.1007/b37801
Pearson, W.B. (1958). A Handbook of Lattice Spacings and Structures of Metals and Alloys. Pergamon, London. https://doi.org/10.1063/1.3062734
Senninger, O., Martínez, E., Soisson, F., Nastar, M., Bréchet, Y. (2014). Atomistic simulations of the decomposition kinetics in Fe-Cr alloys: Influence of magnetism. Acta Mater. 73, 97-106. https://doi.org/10.1016/j.actamat.2014.03.019
Soriano, V.O., Avila, D.E.O., López-Hirata, V.M, Dorantes- Rosales, H.J., González, V.J.L. (2009). Spinodal Decomposition in an Fe-32 at% Cr Alloy during Isothermal Aging. Mater. Trans. 50 (7), 1753-1757. https://doi.org/10.2320/matertrans.M2009029
Soriano, V.O., Avila, D.E.O., López-Hirata, V.M., Cayetano, C.N., González, V.J.L. (2010). Effect of spinodal decomposition on the mechanical behavior of Fe-Cr alloys. Mat. Sci. Eng. A-Struct 527 (12), 2910-2914. https://doi.org/10.1016/j.msea.2010.01.020
Terentyev, D.A., Bonny, G., Malerba, L. (2008). Strengthening due to coherent Cr precipitates in Fe-Cr alloys: Atomistic simulations and theoretical models. Acta Mater. 56 (13), 3229-3235. https://doi.org/10.1016/j.actamat.2008.03.004
Tomoaki, S., Yasuyoshi, N., Daniel, S., Alfredo, C. (2015). Hardening in thermally-aged Fe-Cr binary alloys: Statistical parameters of atomistic configuration. Acta Mater. 89, 116-122. https://doi.org/10.1016/j.actamat.2015.02.013
Voorhees, P.W. (1992). Ostwald ripening of two-phase mixtures. Annu. Rev. Mater. Sci. 22, 197-215. https://doi.org/10.1146/annurev.ms.22.080192.001213
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the printed and online versions of this Journal are the property of Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a “Creative Commons Attribution 4.0 International” (CC BY 4.0) License. You may read the basic information and the legal text of the license. The indication of the CC BY 4.0 License must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the published by the Editor, is not allowed.