Comportamiento mecánico y frente a corrosión de mortero y hormigón armado fabricado con escorias de incineradora de residuos sólidos urbanos

Autores/as

DOI:

https://doi.org/10.3989/revmetalm.102

Palabras clave:

Corrosión, Escorias incineradora, Hormigón armado, Residuos sólidos urbanos (RSU)

Resumen


Se ha evaluado mediante monitorización electroquímicas la influencia de la utilización de escorias procedentes de incineradoras municipales de residuos sólidos urbanos (RSU), en la corrosión de muestras de hormigón armado, utilizando para ello cuatro aceros corrugados, el tradicional acero al carbono B-500-SD y tres aceros inoxidables: el austenítico AISI 304 (EN 1.4301), el dúplex AISI 2304 (EN 1.4362) y el dúplex de bajo contenido en níquel AISI 2001 (EN 1.4482), embebidos en morteros elaborados sólo con escorias como sustituto del árido. Además, se ha estudiado el comportamiento mecánico de morteros y hormigones de cemento Portland elaborados con escorias, procedentes de la incineración de residuos sólidos urbanos, en muestras elaboradas con sustitución total o parcial del árido natural por escoria de RSU. De los resultados obtenidos se deduce que la utilización como árido de las escorias procedentes de la incineración de RSU, mejoran sensiblemente las características de resistencia del convencional mortero y hormigón elaborados sólo con árido natural. En cuanto al estudio de corrosión de las armaduras, las mediciones electroquímicas demuestran que los aceros permanecen en estado pasivo durante todo el periodo estudiado (3 años).

Descargas

Los datos de descargas todavía no están disponibles.

Citas

STM-C876 (1999). Standard test method for half-cell potentials of uncoated reinforcing steel in concrete, ASTM, Philadelphia P.A., USA.

Aubert, J.E., Husson, B., Sarramone, N. (2006). Utilization of municipalwaste incineration (MSWI) fly ash in blended cement. Part 1: Processing and characterization of MSWI fly ash. J. Hazard. Mater. 136 (3), 624–631. https://doi.org/10.1016/j.jhazmat.2005.12.041 PMid:16442718

Bastidas, D.M., Fernández-Jiménez, A., Palomo, A., González, J.A. (2008). A study on the passive state stability of Steel embedded in activated fly ash mortars. Corros. Sci. 50 (4), 1058–1065. https://doi.org/10.1016/j.corsci.2007.11.016

Bertolini, L., Carsana, M., Cassago, D., Quadrio Curzio, A., Collepardi, M. (2004). MSWI ashes as mineral additions in concrete. Cement Concrete Res. 34 (10), 1899–1906. https://doi.org/10.1016/j.cemconres.2004.02.001

Chimenos, J.M., Segarra, M., Fernández, M.A., Espiell, F. (1999). Characterization of the bottom ash in a municipal solid waste incinerator. J. Hazard. Mater. 64 (3), 211–222. https://doi.org/10.1016/S0304-3894(98)00246-5

Chimenos, J.M., Fernández, A.I., Miralles, L., Segarra, M., Espiell, F. (2003). Short-term natural weathering of MSWI bottom ash as a function of particle size. Waste Manage. 23 (10), 887–895. https://doi.org/10.1016/S0956-053X(03)00074-6

Del Valle-Zerme-o, R., Formosa, J., Chimenos, J.M., Martínez, M., Fernández, A.I. (2013). Aggregate material formulated with MSWI bottom ash and APC fly ash for use as secondary building material. Waste Manage. 33 (3), 621–627. https://doi.org/10.1016/j.wasman.2012.09.015 PMid:23102641

Del Valle-Zerme-o, R., Chimenos, J.M., Giró-Paloma, J., Formosa, J. (2014). Use of weathered and fresh bottom ash mix layers as a subbase in road constructions: Environmental behavior enhancement by means of a retaining barrier. Chemosphere 117, 402–409. https://doi.org/10.1016/j.chemosphere.2014.07.095 PMid:25180484

Del Valle-Zerme-o, R., Medina, E., Chimenos, J.M., Formosa, J., Llorente, I., Bastidas, D.M. (2017). Influence of MSWI bottom ash as unbound granular material on the corrosion behaviour of reinforced concrete. J. Mater. Cycles Waste 19 (1), 124–133. https://doi.org/10.1007/s10163-015-0388-5

Forteza, R., Lejos, M., Seguí, C., Cerdá, V. (2004). Characterization of bottom ash in municipal solid waste incinerators for its use in road base. Waste Manage. 24 (9), 899–909. https://doi.org/10.1016/j.wasman.2004.07.004 PMid:15504667

Ginés, O., Chimenos, J.M., Vizcarro, A., Formosa, J., Rosell, J.R. (2009). Combined use of MSWI bottom ash and fly ash as aggregate in concrete formulation: environmental and mechanical considerations. J. Hazard. Mater. 169 (1-3), 643–650. https://doi.org/10.1016/j.jhazmat.2009.03.141 PMid:19427118

Go-i, S., Guerrero, A., Macias, A. (2007). Obtaining cementitious material from municipal solid waste. Mater. Construcc. 57 (286), 41–51.

Juric, B., Hanzic, L., Ilic, R., Samec, N. (2006). Utilization of municipal solid waste bottom ash and recycled aggregate in concrete. Waste Manage. 26 (12), 1436–1442. https://doi.org/10.1016/j.wasman.2005.10.016 PMid:16448812

Lam, C.H.K., Ip, A.W.M., Barford, J.P., McKay, G. (2010). Use of incineration MSW ash: A Review. Sustainability 2 (7), 1943–1968. https://doi.org/10.3390/su2071943

Li, M., Xiang, J., Hu, S., Sun, L., Su, S., Li, P., Sun, X. (2004). Characterization of solid residues from municipal solid waste incinerator. Fuel 83 (10), 1397–1405. https://doi.org/10.1016/j.fuel.2004.01.005

Medina, E., Cobo, A., Bastidas, D.M. (2012). Evaluation of structural behaviour and corrosion resistance of austenitic AISIS 304 and duplex AISI 2304 stainless steel reinforcements embedded in ordinary Portland cement mortars. Rev. Metal. 48 (6), 445–458.

Müller, U., Rübner, K. (2006). The microstructure of concrete made with municipal waste incinerator bottom ash as an aggregate component. Cement Concrete Res. 36 (8), 1434–1443. https://doi.org/10.1016/j.cemconres.2006.03.023

Pecqueur, G., Grignon, C., Quénée, B. (2001). Behaviour of cement-treated MSWI bottom ash. Waste Manage. 21 (3), 229–223. https://doi.org/10.1016/S0956-053X(00)00094-5

Pera, J., Coutaz, L., Ambroise, J., Chababbet, M. (1997). Use of incinerator bottom ash in Concrete. Cement Concrete Res. 27 (1), 1–5. https://doi.org/10.1016/S0008-8846(96)00193-7

Polettini, A., Pomi, R, Sirini, P., Testa, F. (2001). Properties of Portland cement stabilised MSWI fly ashes. J. Hazard. Mater. 88 (1), 123–138. https://doi.org/10.1016/S0304-3894(01)00292-8

Prieto, M.I., Cobo, A., Rodríguez, A., Calderón, V. (2013). Corrosion behavior of reinforcement bars embedded in mortar specimens containing ladle furnace slag in partial substitution of aggregate and cement. Constr. Build. Mater. 38, 188–194. https://doi.org/10.1016/j.conbuildmat.2012.08.044

Rashid, R.A., Frantz, G.C. (1992). MSW incinerator ash as aggregate in concrete and masonry. J. Mater. Civil Eng. 4 (4), 353–368. https://doi.org/10.1061/(ASCE)0899-1561(1992)4:4(353)

Siddique, R. (2010). Use of municipal solid waste ash in concrete. Resour. Conserv. Recy. 2 (55), 83–91. https://doi.org/10.1016/j.resconrec.2010.10.003

Stern, M., Geary, A.L. (1957). Electrochemical polarization: I.A theoretical analysis of the shape of polarizationcurves. J. Electrochem. Soc. 104 (1), 56–63. https://doi.org/10.1149/1.2428496

UNE-EN 1015-3 (2000). Métodos de ensayo de los morteros para alba-ilería. Parte 3: Determinación de la consistencia de mortero fresco (por la mesa de sacudidas), AENOR.

UNE-EN 1015-11 (2000). Métodos de ensayo de los morteros para alba-ilería. Parte 11: Determinación de la resistencia a flexión y a compresión del mortero endurecido, AENOR.

UNE-EN 12390-1 (2001). Ensayos de hormigón endurecido. Parte 1: Formas, medidas y otras características de las probetas y moldes, AENOR.

UNE-EN 1015-6 (2007). Métodos de ensayo de los morteros para alba-ilería. Parte 6: Determinación de la densidad aparente del mortero fresco, AENOR.

UNE-EN 12350-2 (2009). Ensayos del hormigón fresco. Parte 2: Ensayos de asentamiento, AENOR.

UNE-EN 12390-3 (2009). Ensayos de hormigón endurecido. Parte 3: Determinación de la resistencia a compresión de probetas, AENOR.

UNE-EN 933-1 (2012). Ensayos para determinar las propiedades geométricas de los áridos. Parte 1: Determinación de la granulometría de las Partículas. Método de tamizado, AENOR.

Publicado

2017-09-30

Cómo citar

Ávila, R., Medina, E., & Bastidas, D. M. (2017). Comportamiento mecánico y frente a corrosión de mortero y hormigón armado fabricado con escorias de incineradora de residuos sólidos urbanos. Revista De Metalurgia, 53(3), e102. https://doi.org/10.3989/revmetalm.102

Número

Sección

Artículos

Artículos más leídos del mismo autor/a