Síntesis, caracterización y evaluación de la resistencia a la corrosión de recubrimientos híbridos Sol-Gel base TEOS/MPS sobre la aleación AA2050-T8

Autores/as

DOI:

https://doi.org/10.3989/revmetalm.106

Palabras clave:

Aluminio, Corrosión, Recubrimientos, Sol-Gel

Resumen


El presente trabajo tuvo como objetivo sintetizar, caracterizar y evaluar la resistencia a la corrosión de recubrimientos híbridos sol-gel base TEOS/MPS, sintetizados sobre la aleación AA2050-T8 (Al-Cu-Li) bajo diferentes condiciones experimentales de polimerización, tales como solvente y tiempo de envejecimiento, así como diferentes relaciones molares de los precursores inorgánico tetraetoxisilano (TEOS) e híbrido 3-metacriloxipropiltrimetoxisilano (MPS). Se monitoreó la evolución de los soles durante el proceso de envejecimiento mediante espectroscopía infrarroja (FT-IR) y ensayos reológicos. Los recubrimientos se obtuvieron mediante dip-coating y fueron caracterizados a través de microscopía electrónica de barrido (MEB-EDX). La evaluación de la resistencia a la corrosión se realizó mediante ensayos de polarización anódica potenciodinámica, en solución aireada 0,1 M de NaCl. Los resultados obtenidos revelaron que, de los tres solventes evaluados, el etanol es el que permite mejor estabilización del precursor híbrido y favorece el proceso de polimerización de los grupos metacrilato del precursor MPS. Por otra parte, la variación de la relación molar TEOS:MPS conlleva a la obtención de recubrimientos más homogéneos y continuos al incrementar la relación del precursor inorgánico. Finalmente, todos los recubrimientos sintetizados mejoraron la resistencia a la corrosión de la aleación AA2050-T8, en especial los sintetizados bajo la relación TEOS:MPS 80:20.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Barry Carte, C., Grant Norton, M. (2007). Sols, Gels, and Organic Chemistry, Ceramic materials science and engineering. Springer, Washington, pp. 400–411.

Boag, A., Hughes, A.E., Glenn, A.M., Muster, T.H., McCulloch, D. (2011). Corrosion of AA2024-T3 Part I: Localised corrosion of isolated IM particles. Corros. Sci. 53 (1), 17–26. https://doi.org/10.1016/j.corsci.2010.09.009

Bonekamp, B.C., Kreiter, R., Vente, J.F. (2008). Cap. Sol-gel approaches in the synthesis of membrane materials for nanofiltration and pervaporation. Sol-Gel methods for materials processing. Ed. Innocenzi, P., Zub, Y.L., Kessler, V.G., Published Springer, The Netherlands, pp. 47–65. https://link.springer.com/content/pdf/10.1007%2F978-1-4020-8514-7.pdf.

Contreras, G., Nieves, C., Remolina, E., Hernández, C., Liu, Z., Coy, A., Viejo, F. (2015). Síntesis y evaluación de recubrimientos híbridos sol-gel base: TEOS: GPTMS: APTES para la protección contra la corrosión de la aleación AA2124-T4 y su material compuesto AA2124- T4/25%SiCp. Rev. LatinAm. Metal. Mat. 35, 222–236.

Coy, A.E., Viejo, F., Garcia-Garcia, F.J., Liu, Z., Skeldon, P., Thompson, G.E. (2010). Effect of excimer laser surface melting on the microstructure and corrosion performance of the die cast AZ91D magnesium alloy. Corros. Sci. 52 (2), 387–397. https://doi.org/10.1016/j.corsci.2009.09.025

Criado, M., Sobrados, I., Sanz, J. (2014). Polymerization of hybrid organic–inorganic materials from several silicon compounds followed by TGA/DTA, FTIR and NMR techniques. Prog. Org. Coat. 77, 880–891. https://doi.org/10.1016/j.porgcoat.2014.01.019

Crill, M.J., Chellman, D.J., Balmuth, E.S., Philbrook, M., Smith, K.P., Cho, A., Niedzinski, M., Muzzolini, R., Feiger, J. (2006). Evaluation of AA 2050-T87 Al-Li Alloy Crack Turning Behavior. Mater. Sci. Forum 519–521, 1323–1328. https://doi.org/10.4028/www.scientific.net/MSF.519-521.1323

Embuka, D., Coy, A.E., Hernández-Barrios, C.A., Viejo, F., Liu, Z. (2017). Thermal stability of excimer laser melted films formed on the AA2024-T351 aluminium alloy: Microstructure and corrosion performance. Surf. Coat. Tech. 313, 214–221. https://doi.org/10.1016/j.surfcoat.2017.01.092

Gharbi, O., Birbilis, N., Ogle, K. (2017). Li reactivity measurement during the surface pretreatment of Al-Li alloy AA2050-T3. Electrochim. Acta 243, 207–219. https://doi.org/10.1016/j.electacta.2017.05.038

Guérin, M., Alexis, J., Andrieu, E., Blanc, C., Odemer, G. (2015). Corrosion-fatigue lifetime of Aluminium–Copper–Lithium alloy 2050 in chloride solution. Mater. Design 87, 681–692. https://doi.org/10.1016/j.matdes.2015.08.003

Guo, R., Hu, C., Pan, F., Wu, H., Jiang, Z. (2006). PVA–GPTMS/TEOS hybrid pervaporation membrane for dehydration of ethylene glycol aqueous solution. J. Membrane Sci. 281 (1–2), 454–462. https://doi.org/10.1016/j.memsci.2006.04.015

Han, Y.H., Taylor, A., Mantle, M.D., Knowles, K.M. (2007). Sol–gel-derived organic–inorganic hybrid materials. J. Non-Cryst. Solids. 353 (3), 313–320. https://doi.org/10.1016/j.jnoncrysol.2006.05.042

Hernández-Barrios, C.A., Remolina, E.N, Contreras, G.A., Parada, N.J., Coy, A.E., Viejo, F. (2014). Uso potencial de recubrimientos híbridos sol-gel como alternativa para la protección contra la corrosión de aleaciones ligeras. Rev. LatinAm. Metal. Mat. 34, 251–261.

Hofacker, S., Mechtel, M., Mager, M., Kraus, H. (2002). Sol–gel: a new tool for coatings chemistry. Prog. Org. Coat. 45 (2-3), 159–164. https://doi.org/10.1016/S0300-9440(02)00045-0

Jiang, H., Zheng, Z., Wang, X. (2008). Kinetic study of methyltriethoxysilane (MTES) hydrolysis by FTIR spectroscopy under different temperatures and solvents. Vib. Spectrosc. 46 (1), 1–7. https://doi.org/10.1016/j.vibspec.2007.07.002

Lequeu, P., Smith, K.P., Daniélou, A. (2010). Aluminum-Copper-Lithium Alloy 2050 Developed for Medium to Thick Plate. J. Mater. Eng. Perform. 19 (6), 841–847. https://doi.org/10.1007/s11665-009-9554-z

Li, J.F, Zheng, Z.Q., Jiang, N., Li, S.C. (2005). Study on localized corrosion mechanism of 2195 Al-Li alloy in 4.0% NaCl solution (pH 6.5) using a three-electrode coupling system. Mater. Corros. 56 (3), 192–196. https://doi.org/10.1002/maco.200403824

Li, J.F., Zheng, Z.Q., Li, S.C., Chen, W.J., Ren, W.D., Zhao, X.S. (2007). Simulation study on function mechanism of some precipitates in localized corrosion of Al alloys. Corros. Sci. 49 (6), 2436–2449. https://doi.org/10.1016/j.corsci.2006.12.002

Li, H.Y., Tang, Y., Zeng, Z., Zheng, F. (2008). Exfoliation corrosion of T6- and T8-aged AlxCuyLiz alloy. T. Nonferr. Metal. Soc. China 18 (4), 778–783. https://doi.org/10.1016/S1003-6326(08)60134-X

Li, Y., Shi, Z., Lin, J., Yang, Y.L., Huang, B.M., Chung, T.F., Yang, J.R. (2016). Experimental investigation of tension and compression creep-ageing behaviour of AA2050 with different initial tempers. Mat. Sci. Eng. A-Struct. 657, 299–308. https://doi.org/10.1016/j.msea.2016.01.074

Limpo, J., Rubio, J., Oteo, J.L. (1993). Estudio por FT-IR de la hidrólisis del tetraetilortosilicato. Bol. Soc. Esp. Ceram. V. 32 (1), 31–35. http://digital.csic.es/bitstream/10261/49490/1/bsecv-10-05-2012.pdf.

Liu, F., Shan, D., Han, E., Liu, C. (2008). Barium phosphate conversion coating on die-cast AZ91D magnesium alloy. T. Nonferr. Metal. Soc. China 18, 344–348. https://doi.org/10.1016/S1003-6326(10)60229-4

Ma, Y., Zhou, X., Thompson, G.E., Curioni, M., Zhong, X., Koroleva, E., Skeldon, P., Thomson, P., Fowles, M. (2011). Discontinuities in the porous anodic film formed on AA2099-T8 aluminium alloy. Corros. Sci. 53 (12), 4141–4151. https://doi.org/10.1016/j.corsci.2011.08.023

Malard, B., De Geuser, F., Deschamps, A. (2015). Microstructure distribution in an AA2050 T34 friction stir weld and its evolution during post-welding heat treatment. Acta Mater. 101, 90–100. https://doi.org/10.1016/j.actamat.2015.08.068

Moulay, S. (2010). Chemical modification of poly (vinyl chloride) still on the run. Prog. Polym. Sci. 35 (3), 303–331. https://doi.org/10.1016/j.progpolymsci.2009.12.001

Ohtsuki, C., Miyazaki, T., Tanihara, M. (2002). Development of bioactive organic–inorganic hybrid for bone substitutes. Mat. Sci. Eng. C 22 (1), 27–34. https://doi.org/10.1016/S0928-4931(02)00109-1

Pe-a Alfonso, R., Rubio, F., Rubio, J., Oteo, J.L. (2007). Study of the hydrolysis and condensation of ?-Aminopropyltriethoxysilane by FT-IR spectroscopy. J. Mater. Sci. 42 (2), 595–603. https://doi.org/10.1007/s10853-006-1138-9

Polmear, L. (2005). Light alloys: From traditional alloys to nanocrystals, Fourth Edition, Butterworth-Heinemann, Reino Unido.

Remolina, E.N, Hernández-Barrios, C.A., Coy, A.E., Viejo, F., Alba, N.C. (2017). Efecto de la adición de nitrato de cerio y el tiempo de envejecimiento en la síntesis de recubrimientos híbridos sol-gel base TEOS-GPTMS sobre la aleación de aluminio AA2050-T8. Rev. LatinAm. Metal. Mat. 37 (OnLine), http://www.rlmm.org/ojs/index.php/rlmm/article/view/793.

Rosero, N.C., Pellice, S.A., Castro, Y., Aparicio, M., Durán, A. (2009). Improved corrosion resistance of AA2024 alloys through hybrid organic–inorganic sol–gel coatings produced from sols with controlled polymerization. Surf. Coat. Tech. 203 (13), 1897–1903. https://doi.org/10.1016/j.surfcoat.2009.01.019

Rosero, N.C., Paussa, L., Andreatta, F., Castro, Y., Durán, A., Aparicio, M., Fedrizzi, L. (2010a). Optimization of hybrid sol–gel coatings by combination of layers with complementary properties for corrosion protection of AA2024. Prog. Org. Coat. 69 (2), 167–174. https://doi.org/10.1016/j.porgcoat.2010.04.013

Rosero, N.C., Figiel, P., Jedrzejewski, R., Biedunkiewicz, A., Castro, Y., Aparicio, M., Pellice, S.A., Durán, A. (2010b). Influence of cerium concentration on the structure and properties of silica-methacrylate sol–gel coatings. J. Sol-Gel Sci. Techn. 54 (3), 301–311.

Rueda, L.M., Hernández-Barrios, C.A., Viejo, F., Coy, A.E., Mosa, J., Aparicio, M. (2016). Dise-o de recubrimientos multicapa barrera-biomimético base TEOS-GPTMS sobre la aleación de magnesio Elektron 21 de potencial aplicación en la fabricación de implantes ortopédicos. Rev. Metal. 52 (3), e075. https://doi.org/10.3989/revmetalm.075

Téllez, L., Rubio, F., Pe-a-Alfonso, R., Rubio, J. (2004). Seguimiento por espectroscopia infrarroja (FT-IR) de la copolimerización de TEOS (tetraetilortosilicato) y PDMS (polidimetilsiloxano) en presencia de tbt (tetrabutiltitanio). Bol. Soc. Esp. Ceram. V. 43 (5), 883–890. http://digital.csic.es/bitstream/10261/4416/1/espectroscopia.pdf. https://doi.org/10.3989/cyv.2004.v43.i5.417

Viejo, F., Coy, A.E., Garcia-Garcia, F.J., Liu, Z., Skeldon, P., Thompson, G.E. (2010a). Relationship between microstructure and corrosion performance of AA2050-T8 aluminium alloy after excimer laser surface melting. Corros. Sci. 52 (6), 2179–2187. https://doi.org/10.1016/j.corsci.2010.03.003

Viejo, F., Aburas, Z., Coy, A.E., Garcia-Garcia, F.J., Liu, Z. Skeldon, P., Thompson, G.E. (2010b). Performance of Al alloys following excimer LSM – anodising approaches. Surf. Interface Anal. 42 (4), 252–257. https://doi.org/10.1002/sia.3144

Wang, D., Bierwagen, G.P. (2009). Sol–gel coatings on metals for corrosion protection. Prog. Org. Coat. 64 (4), 327–338. https://doi.org/10.1016/j.porgcoat.2008.08.010

Wang, N., Wu, C., Wu Y., Xu, T. (2010). Hybrid anion exchange hollow fiber membranes through sol–gel process of different organic silanes within BPPO matrix. J. Membrane Sci. 363 (1–2), 128–139. https://doi.org/10.1016/j.memsci.2010.07.020

Warner, T. (2006). Recently-developed aluminium solutions for aerospace applications. Mater. Sci. Forum. 519–521, 1271–1278. http://dx.doi.org/10.4028/www.scientific.net/MSF.519-521.1271. https://doi.org/10.4028/www.scientific.net/MSF.519-521.1271

Zheng, S., Li, J. (2010). Inorganic-organic sol gel hybrid coatings for corrosion protection of metals. J. Sol-Gel Sci. Techn. 54 (2), 174–187. https://doi.org/10.1007/s10971-010-2173-1

Publicado

2017-12-30

Cómo citar

Nieves, C., Remolina, E. N., Hernández, C. A., Rueda, L. M., Coy, A. E., & Viejo, F. (2017). Síntesis, caracterización y evaluación de la resistencia a la corrosión de recubrimientos híbridos Sol-Gel base TEOS/MPS sobre la aleación AA2050-T8. Revista De Metalurgia, 53(4), e106. https://doi.org/10.3989/revmetalm.106

Número

Sección

Artículos