La eliminación de metales tóxicos presentes en efluentes líquidos mediante resinas de cambio iónico. Parte XI: Cobalto(II)/H+/Lewatit TP260

Autores/as

DOI:

https://doi.org/10.3989/revmetalm.154

Palabras clave:

Cobalto(II), Efluentes líquidos, Eliminación, Lewatit TP260, Nanotubos de carbono de pared múltiple

Resumen


Este trabajo investiga sobre la eliminación de cobalto(II) presente en medios acuosos mediante la resina de cambio iónico Lewatit TP260. El sistema se estudia bajo distintas condiciones experimentales: velocidad de agitación (300-1400 min-1), temperatura (20-60 ºC), pH del medio acuoso (1-5), dosificacion de la resina (0.07-0.5 g·L-1) y fuerza iónica de la disolución acuosa. El metal se carga en la resina mediante una reacción de intercambio catiónica en un proceso endotérmico y espontáneo. Esta reacción de intercambio se define por un proceso de difusión en la disolución acuosa y el modelo cinético de pseudo-primer orden (20 ºC) y el modelo cinético de pseudo-segundo orden (60 ºC), asimismo los resultados experimentales se ajustan bien a la isoterma de Langmuir. Los resultados experimentales del sistema se han comparado con los obtenidos con otras resinas de intercambio cationico y también con nanotubos de carbono de pared multiple oxidados y sin oxidar. Se estudia la selectividad del sistema Co(II)-Lewatit TP260 con respecto a la presencia de otros cationes (disoluciones binarias Co-metal) en el medio acuoso). El cobalto(II) cargado en la resina se puede fluir con disoluciones ácidas (HCl o H2SO4).

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Alguacil, F.J., Coedo, A.G., Dorado, T., Padilla, I. (2002). The removal of toxic metals from liquid effluents by ion exchange resins. Part I: chromium(VI)/sulphate/Dowex 1x8. Rev. Metal. 38 (4), 306-311. https://doi.org/10.3989/revmetalm.2002.v38.i4.412

Alguacil, F.J. (2002). The removal of toxic metals from liquid effluents by ion exchange resins. Part II: cadmium(II)/sulphate/Lewatit TP260. Rev. Metal. 38 (5), 348-352. https://doi.org/10.3989/revmetalm.2002.v38.i5.418

Alguacil, F.J. (2003). The removal of toxic metals from liquid effluents by ion exchange resins. Part III: copper(II)/sulphate/Amberlite 200. Rev. Metal. 39 (3), 205-209. https://doi.org/10.3989/revmetalm.2003.v39.i3.330

Alguacil, F.J., López, F.A., Rodriguez, O., Martinez-Ramirez, S., Garcia-Diaz, I. (2016). Sorption of indium (III) onto carbon nanotubes. Ecotox. Environ. Safe. 130, 81-86. https://doi.org/10.1016/j.ecoenv.2016.04.008 PMid:27085001

Alguacil, F.J., Garcia-Diaz, I., Lopez, F., Rodriguez, O. (2017). Removal of Cr(VI) and Au(III) from aqueous streams by the use of carbon nanoadsorption technology. Desalin. Water Treat. 63, 351-356. https://doi.org/10.5004/dwt.2017.0264

Alguacil, F.J. (2017a). The removal of toxic metals from liquid effluents by ion exchange resins. Part IV: chromium(III)/H+/Lewatit SP112. Rev. Metal. 53 (2), e093.

Alguacil, F.J. (2017b). The removal of toxic metals from liquid effluents by ion exchange resins. Part V: nickel(II)/H+/Dowex C400. Rev. Metal. 53 (4), e105.

Alguacil, F.J. (2018a). The removal of toxic metals from liquid effluents by ion exchange resins. Part VI: manganese(II)/H+/Lewatit K2621. Rev. Metal. 54 (2), e116.

Alguacil, F.J. (2018b). The removal of toxic metals from liquid effluents by ion exchange resins. Part VII: manganese(VII)/H+/Amberlite 958. Rev. Metal. 54 (3), e125.

Alguacil, F.J. (2018c). Adsorption of gold(I) and gold(III) using multiwalled carbon nanotubes. Appl. Sci. 8 (11), 2264. https://doi.org/10.3390/app8112264

Alguacil, F.J., Escudero, E. (2018). The removal of toxic metals from liquid effluents by ion exchange resins. Part VIII: arsenic(III)/OH-/Dowex 1x8. Rev. Metal. 54 (4), e132.

Alguacil, F.J. (2019a). The removal of toxic metals from liquid effluents by ion exchange resins. Part IX: lead(II)/H+/Amberlite IR-120. Rev. Metal. 55 (1), e138.

Alguacil, F.J. (2019b). The removal of toxic metals from liquid effluents by ion exchange resins. Part X: antimony(III)/H+/Ionac SR7. Rev. Metal. 55 (3), e152.

Anirudhan, T.S., Shainy, F., Deepa, J.R. (2019). Effective removal of Cobalt(II) ions from aqueous solutions and nuclear industry wastewater using sulfhydryl and carboxyl functionalised magnetite nanocellulose composite: batch adsorption studies. Chem. Ecol. 35 (3), 235-255. https://doi.org/10.1080/02757540.2018.1532999

Ashtari, P., Pourghahramani, P. (2018). Hydrometallurgical recycling of cobalt from zinc plants residue. J. Mater. Cycles Waste 20 (1), 155-166. https://doi.org/10.1007/s10163-016-0558-0

ATSDR (2004). Toxicological profile for cobalt. Agency for Toxic Substances and Disease Registry, Department of Health and Human Services, USA. https://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=373&tid=64.

Bozecka, A., Surdek, A., Bozecki, P. (2018). Assessment of suitability of selected sorbents for removal of Co2+ ions from aqueous solutions. Przemysl Chemiczny 97, 1565-1568.

Cerpa, A., Alguacil, F.J., Lado, I., López, A., López, F.A. (2017). Removal of Ni(II) and Co(II) ions from acidic solutions by Lewatit TP-260 resin. Desalin. Water Treat. 70, 169-174. https://doi.org/10.5004/dwt.2017.20329

Daraei, H., Mittal, A. (2017). Investigation of adsorption performance of activated carbon prepared from waste tire for the removal of methylene blue dye from wastewater. Desalin. Water Treat. 90, 294-298. https://doi.org/10.5004/dwt.2017.21344

Devi, P.S.R., Kawadiya, S., Verma, R., Reddy, A.V.R. (2018). Determination of distribution ratios of Zr(IV), Co(II), Sb(V) and Nb(V) using polyaniline in acid solutions. J. Radioanal. Nucl. Ch. 317 (2), 881-889. https://doi.org/10.1007/s10967-018-5985-z

Farag, A.M., Sokker, H.H., Zayed, E.M., Eldien, F.A.N., Abd Alrahman, N.M. (2018). Removal of hazardous pollutants using bifunctional hydrogel obtained from modified, starch by grafting copolymerization. Int. J. Biol. Macromol. 120 (Part B), 2188-2199. https://doi.org/10.1016/j.ijbiomac.2018.06.171 PMid:30009903

Hayati, B., Maleki, A., Najafi, F., Gharibi, F., McKay, G., Gupta, V.K., Puttaiah, S.H., Marzban, N. (2018). Heavy metal adsorption using PAMAM/CNT nanocomposite from aqueous solution in batch and continuous fixed bed systems. Chem. Eng. J. 346, 258-270. https://doi.org/10.1016/j.cej.2018.03.172

Hemavathy, R.R.V., Kumar, P.S., Suganya, S., Swetha, V., Varjani, S.J. (2019). Modelling on the removal of toxic metal ions from aquatic system by different surface modified Cassia fistula seeds. Bioresource Technol. 281, 1-9. https://doi.org/10.1016/j.biortech.2019.02.070 PMid:30784996

Kara, I., Tunc, D., Sayin, F., Akar, S.T. (2018). Study on the performance of metakaolin based geopolymer for Mn(II) and Co(II) removal. Appl. Clay Sci. 161, 184-193. https://doi.org/10.1016/j.clay.2018.04.027

Kim, J.H., Gibb, H.J., Howe, P.D. (2006). Cobalt and inorganic cobalt compounds. World Health Organization. Geneva. Switzerland.

Leyssens, L., Vinck, B., Van Der Straeten, C., Wuyts, F., Maes, L. (2017). Cobalt toxicity in humans-A review of the potential sources and systemic health effects. Toxicology 387, 43-56. https://doi.org/10.1016/j.tox.2017.05.015 PMid:28572025

López Diaz-Pavon, A., Cerpa, A., Alguacil, F.J. (2014). Processing of indium(III) solutions via ion exchange with Lewatit K-2621 resin. Rev. Metal. 50 (2), e010. https://doi.org/10.3989/revmetalm.010

Ma, J., Qin, G., Zhang, Y., Sun, J., Wang, S., Jiang, L. (2018). Heavy metal removal from aqueous solutions by calcium silicate powder from waste coal fly-ash. J. Clean. Prod. 182, 776-782. https://doi.org/10.1016/j.jclepro.2018.02.115

Omelchuk, K., Chagnes, A. (2018). New cationic exchangers for the recovery of cobalt(II), nickel(II) and manganese(II) from acidic chloride solutions: Modelling of extraction curves. Hydrometallurgy 180, 96-103. https://doi.org/10.1016/j.hydromet.2018.07.003

Rodríguez, A., Sáez, P., Diez, E., Gómez, J.M., García, J., Bernabé, I. (2019). Highly efficient low-cost zeolite for cobalt removal from aqueous solutions: Characterization and performance. Environ. Prog. Sustain. Energy 38 (1), S352-S365. https://doi.org/10.1002/ep.13057

Rahmani, A., Karimi, G.R., Rahmani, A., Hosseini, M., Rahmani, A. (2017). Removal/separation of Co(II) ions from environmental sample solutions by MnFe2O4/bentonite nanocomposite as a magnetic biomaterial. Desalin. Water Treat. 89, 250-257. https://doi.org/10.5004/dwt.2017.21383

Song, Y., Tsuchida, Y., Matsumiya, M., Uchino, Y., Yanagi, I. (2018). Separation of tungsten and cobalt from WC-Co hard metal wastes using ion-exchange and solvent extraction with ionic liquid. Miner. Eng. 128, 224-229. https://doi.org/10.1016/j.mineng.2018.08.047

Vafaei, F., Torkaman, R., Moosavian, M.A., Zaheri, P. (2018). Optimization of extraction conditions using central composite design for the removal of Co(II) from chloride solution by supported liquid membrane. Chem. Eng. Res. Des. 133, 126-136. https://doi.org/10.1016/j.cherd.2018.03.010

Xavier, A.L., Adarme, O.F.H., Furtado, L.M., Ferreira, G.M.D., da Silva, L.H.M., Gil, L.F., Gurgel, L.V.A. (2018). Modeling adsorption of copper(II), cobalt(II) and nickel(II) metal ions from aqueous solution onto a new carboxylated sugarcane bagasse. Part II: Optimization of monocomponent fixed-bed column adsorption. J. Colloid Interf. Sci. 516, 431-445. https://doi.org/10.1016/j.jcis.2018.01.068 PMid:29408133

Yuan, G., Zhao, C., Tu, H., Li, M., Liu, J., Liao, J., Yang, Y., Yang, J., Liu, N. (2018). Removal of Co(II) from aqueous solution with Zr-based magnetic metal-organic framework composite. Inorg. Chim. Acta 483, 488-495. https://doi.org/10.1016/j.ica.2018.08.057

Zherebtsov, S.I., Malyshenko, N.V., Bryukhovetskaya, L.V., Lyrshchikov, S.Y., Ismagilov, Z.R. (2018). Sorption of Cobalt Cations by Humic Acids. Coke Chem. 61 (7), 266-269. https://doi.org/10.3103/S1068364X18070086

Publicado

2019-12-30

Cómo citar

Alguacil, F. J. (2019). La eliminación de metales tóxicos presentes en efluentes líquidos mediante resinas de cambio iónico. Parte XI: Cobalto(II)/H+/Lewatit TP260. Revista De Metalurgia, 55(4), e154. https://doi.org/10.3989/revmetalm.154

Número

Sección

Artículos