La eliminación de metales tóxicos presentes en efluentes líquidos mediante resinas de cambio iónico. Parte XIII: Zinc(II)/H+/Lewatit OC-1026

Autores/as

DOI:

https://doi.org/10.3989/revmetalm.172

Palabras clave:

Efluentes líquidos, Eliminación, Lewatit OC-1026, Nanotubos de carbono de pared múltiple, Zinc(lI)

Resumen


La resina de intercambio catiónico Lewatit OC-1026 (que tiene como grupo activo al acido di-2-etilhexil fosfórico adsorbido) se ha utilizado para la eliminación de zinc(II) de disoluciones acuosas. Esta eliminación se ha investigado bajo diferentes condiciones experimentales: velocidad de agitación (400-1200 min−1), temperatura (20-60 °C), pH del medio acuoso (1-4) y concentración de la resina (0,05-0,4 g·L−1). La carga de zinc(II) en la resina disminuye con el aumento de la temperatura (reacción exotérmica) en un proceso espontaneo, alcanzándose el equilibrio en tiempos mas cortos al aumentar esta variable. A 20 °C, los datos experimentales se ajustan a la cinética de pseudo-segundo orden, mientras que a 60 °C el modelo cinético que mejor representa la carga del metal en la resina es el de segundo orden. El proceso de cambio iónico depende del valor de pH del medio acuoso, disminuyendo el tanto por ciento de la carga del metal en la resina con la disminución de este valor (de 4 a 1); a pH 4, la carga del metal responde al modelo de difusión en la partícula y a la isoterma tipo-2 de Langmuir. La resina Lewatit OC-1026 presenta mejores características, respecto a la eliminación de zinc(II), que los nanotubos de carbono funcionarizados (grupos carboxílicos) y sin funcionalizar. El zinc(II) cargado en la resina puede ser eluido mediante el uso de disoluciones ácidas.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Abdelrahman, E.A., Tolan, D.A., Nassar, M.Y. (2019). A tunable template-assisted hydrothermal synthesis of hydroxysodalite zeolite nanoparticles using various aliphatic organic acids for the removal of zinc(II) ions from aqueous media. J. Inorg. Organomet. Polym. Mater. 29, 229-247. https://doi.org/10.1007/s10904-018-0982-9

Abd El Salam, H.M., Zaki, T. (2019). A novel microwave synthesis of manganese based MOF for adsorptive of Cd(II), Pb(II) and Hg(II) ions from aqua medium. Egyptian J. Chem. 62, 1237-1251. https://doi.org/10.21608/ejchem.2019.6524.1550

Ahmad, S.Z.N., Wan Salleh, W.N., Ismail, A.F., Yusof, N., Mohd Yusop, M.Z., Aziz, F. (2020). Adsorptive removal of heavy metal ions using graphene-based nanomaterials: Toxicity, roles of functional groups and mechanisms. Chemosphere 248, 126008. https://doi.org/10.1016/j.chemosphere.2020.126008 PMid:32006836

Alguacil, F.J., Coedo, A.G., Dorado, T., Padilla, I. (2002). The removal of toxic metals from liquid effluents by ion exchange resins. Part I: chromium(VI)/sulphate/Dowex 1×8. Rev. Metal. 38 (4), 306-311. https://doi.org/10.3989/revmetalm.2002.v38.i4.412

Alguacil, F.J. (2002). The removal of toxic metals from liquid effluents by ion exchange resins. Part II: cadmium(II)/sulphate/Lewatit TP260. Rev. Metal. 38 (5), 348-352. https://doi.org/10.3989/revmetalm.2002.v38.i5.418

Alguacil, F.J. (2003). The removal of toxic metals from liquid effluents by ion exchange resins. Part III: copper(II)/sulphate/Amberlite 200. Rev. Metal. 39 (3), 205-209. https://doi.org/10.3989/revmetalm.2003.v39.i3.330

Alguacil, F.J. (2017a). The removal of toxic metals from liquid effluents by ion exchange resins. Part IV: chromium(III)/H+/Lewatit SP112. Rev. Metal. 53 (2), e093.

Alguacil, F.J. (2017b). The removal of toxic metals from liquid effluents by ion exchange resins. Part V: nickel(II)/H+/Dowex C400. Rev. Metal. 53 (4), e105.

Alguacil, F.J., Garcia-Diaz, I., Lopez, F., Rodriguez, O. (2017). Removal of Cr(VI) and Au(III) from aqueous streams by the use of carbon nanoadsorption technology. Desal. Water Treat. 63, 351-356. https://doi.org/10.5004/dwt.2017.0264

Alguacil, F.J. (2018a). The removal of toxic metals from liquid effluents by ion exchange resins. Part VI: manganese(II)/H+/Lewatit K2621. Rev. Metal. 54 (2), e116.

Alguacil, F.J. (2018b). The removal of toxic metals from liquid effluents by ion exchange resins. Part VII: manganese(VII)/H+/Amberlite 958. Rev. Metal. 54 (3), e125.

Alguacil, F.J., Escudero, E. (2018). The removal of toxic metals from liquid effluents by ion exchange resins. Part VIII: arsenic(III)/OH−/Dowex 1×8. Rev. Metal. 54 (4), e132.

Alguacil, F.J. (2019a). The removal of toxic metals from liquid effluents by ion exchange resins. Part IX: lead(II)/H+/Amberlite IR120. Rev. Metal. 55 (1), e138.

Alguacil, F.J. (2019b). The removal of toxic metals from liquid effluents by ion exchange resins. Part X: antimony(III)/H+/Ionac SR7. Rev. Metal. 55 (3), e152.

Alguacil, F.J. (2019c). The removal of toxic metals from liquid effluents by ion exchange resins. Part XI: cobalt(II)/H+/Lewatit TP260. Rev. Metal. 55 (4), e154.

Alguacil, F.J., Escudero, E. (2020). The removal of toxic metals from liquid effluents by ion exchange resins. Part XII: mercury(II)/H+/Lewatit SP112. Rev. Metal. 56 (1), e160.

Alguacil, F.J., López, F.A., Rodriguez, O., Martinez-Ramirez, S., Garcia-Diaz, I. (2016). Sorption of indium (III) onto carbon nanotubes. Ecotox. Environ. Safe. 130, 81-86. https://doi.org/10.1016/j.ecoenv.2016.04.008 PMid:27085001

Aliyu, A. (2019). Synthesis, electron microscopy properties and adsorption studies of Zinc (II) ions (Zn2+) onto as-prepared Carbon Nanotubes (CNTs) using Box-Behnken Design (BBD). Sci. African 3, e00069. https://doi.org/10.1016/j.sciaf.2019.e00069

Chasapis, C.T., Loutsidou, A.C., Spiliopoulou, C.A., Stefanidou, M.E. (2012). Zinc and human health: an update. Arch. Toxicol. 86, 521-534. https://doi.org/10.1007/s00204-011-0775-1 PMid:22071549

Chen, Y., Zhao, H., Li, Y., Zhao, W., Yang, X., Meng, X., Wang, H. (2019). Two-step preparation of an amidoxime-functionalized chelating resin for removal of heavy metal ions from aqueous solution. J. Chem. Eng. Data 64, 4037-4045. https://doi.org/10.1021/acs.jced.9b00402

Gümüş, D. (2019). Biosorptive application of defatted Laurus nobilis leaves as a waste material for treatment of water contaminated with heavy metal. Int. J. Phytoremediat. 21 (6), 556-563. https://doi.org/10.1080/15226514.2018.1537254 PMid:30729808

Ho, Y.-S. (2006). Review of second-order models for adsorption systems. J. Hazard. Mater. 136 (3), 681-689. https://doi.org/10.1016/j.jhazmat.2005.12.043 PMid:16460877

López Díaz-Pavón, A., Cerpa, A., Alguacil, F.J. (2014). Processing of indium(III) solutions via ion exchange with Lewatit K-2621 resin. Rev. Metal. 50 (2), e010. https://doi.org/10.3989/revmetalm.010

Maret, W. (2013). Zinc and human disease. In: Interrelations between Essential Metal Ions and Human Diseases. Sigel A., Sigel, H., Sigel, R. (Eds), Met. Ions Life Sci. Vol 13. Springer, Dordrecht, pp. 389-414. https://doi.org/10.1007/978-94-007-7500-8_12 PMid:24470098

Mirjavadi, E.S., Tehrani, R.M.A., Khadir, A. (2019). Effective adsorption of zinc on magnetic nanocomposite of Fe3O4/zeolite/cellulose nanofibers: kinetic, equilibrium, and thermodynamic study. Environ. Sci. Pollut. Res. 26, 33478-33493. https://doi.org/10.1007/s11356-019-06165-z PMid:31529345

Sakalova, H., Malovanyy, M., Vasylinycz, T., Palamarchuk, O., Semchuk, J. (2019). Cleaning of Effluents from Ions of Heavy Metals as Display of Environmentally Responsible Activity of Modern Businessman J. Ecol. Eng. 20 (4), 167-176. https://doi.org/10.12911/22998993/102841

Walker Jr., L. (2020). Clean Water Act (CWA) Alternate Test Procedures (ATP) (personal communication to F.J.A. 19/02/2020). U.S. Environmental Protection Agency (EPA). https://www.epa.gov/cwa-methods/alternate-test-procedures.

WHO (2020). Zinc in drinking-water. World Health Organization (accessed February 2020). https://www.who.int/water_sanitation_health/dwq/chemicals/zinc.pdf.

Wieszczycka, K., Filipowiak, K., Aksamitowski, P., Wojciechowska, I. (2020). Task-specific ionic liquid impregnated resin for zinc(II) recovery from chloride solutions. J. Molec. Liq. 299, 112115. https://doi.org/10.1016/j.molliq.2019.112115

Zand, A.D., Abyaneh, M.R. (2019). Equilibrium and kinetic studies in remediation of heavy metals in landfill leachate using wood-derived biochar. Desalin. Water Treat. 141, 279-300. https://doi.org/10.5004/dwt.2019.23571

Zhang, Q., Hou, Q., Huang, G., Fan, Q. (2020). Removal of heavy metals in aquatic environment by graphene oxide composites: a review. Environ. Sci. Pollut. Res. 27, 190-209. https://doi.org/10.1007/s11356-019-06683-w PMid:31838692

Publicado

2020-09-30

Cómo citar

Alguacil, F. J. (2020). La eliminación de metales tóxicos presentes en efluentes líquidos mediante resinas de cambio iónico. Parte XIII: Zinc(II)/H+/Lewatit OC-1026. Revista De Metalurgia, 56(3), e172. https://doi.org/10.3989/revmetalm.172

Número

Sección

Artículos