The removal of toxic metals from liquid effluents by ion exchange resins. Part XII: Mercury(II) /H+/Lewatit SP112

Authors

DOI:

https://doi.org/10.3989/revmetalm.160

Keywords:

Lewatit SP112, Liquid effluents, Mercury(II), Multiwalled carbon nanotubes, Removal

Abstract


Mercury(II) was eliminated, from acidic aqueous solutions, by the cationic ion exchange resin Lewatit SP112. Various experimental conditions were tested in the investigation, such as, stirring speed (275–1000 min−1), temperature (20–60 °C), pH of the aqueous solution (0–4) and resin dosage (0.05–0.4 g·L−1). Mercury(II) uptake onto the resin decreased with the increase of the temperature (exothermic reaction) in a spontaneous process, whereas the moving boundary model represented the metal uptake in the 20–60 °C tem­peratures range. Moreover, the experimental data fitted to the second order kinetic model (275 min−1) or the pseudo-second order kinetic model (500–1000 min−1), though maximum metal uptake was not dependent on the stirring speed applied to the system. The experimental results responded well to the Langmuir type-2 isotherm. The Hg(II)-loading ability of Lewatit SP112 was compared against that of other resins and non-functionalized multiwalled carbon nanotubes. Mercury(II) loaded onto the resin can be eluted by means of various eluants, furher, zero valent mercury was yielded from the eluates.

Downloads

Download data is not yet available.

References

Alguacil, F.J., Coedo, A.G., Dorado, T., Padilla, I. (2002). The removal of toxic metals from liquid effluents by ion exchange resins. Part I: chromium(VI)/sulphate/Dowex 1×8. Rev. Metal. 38 (4), 306-311. https://doi.org/10.3989/revmetalm.2002.v38.i4.412

Alguacil, F.J. (2002). The removal of toxic metals from liquid effluents by ion exchange resins. Part II: cadmium(II)/sul­phate/Lewatit TP260. Rev. Metal. 38 (5), 348-352. https://doi.org/10.3989/revmetalm.2002.v38.i5.418

Alguacil, F.J. (2003). The removal of toxic metals from liquid effluents by ion exchange resins. Part III: copper(II)/sul­phate/Amberlite 200. Rev. Metal. 39 (3), 205-209. https://doi.org/10.3989/revmetalm.2003.v39.i3.330

Alguacil, F.J., López, F.A., Rodriguez, O., Martinez-Ramirez, S., Garcia-Diaz, I. (2016). Sorption of indium (III) onto car­bon nanotubes. Ecotox. Environ. Safe. 130, 81-86. https://doi.org/10.1016/j.ecoenv.2016.04.008 PMid:27085001

Alguacil, F.J. (2017a). The removal of toxic metals from liquid effluents by ion exchange resins. Part IV: chromium(III)/H+/Lewatit SP112. Rev. Metal. 53 (2), e093.

Alguacil, F.J. (2017b). The removal of toxic metals from liq­uid effluents by ion exchange resins. Part V: nickel(II)/H+/Dowex C400. Rev. Metal. 53 (4), e105.

Alguacil, F.J. (2018a). The removal of toxic metals from liquid effluents by ion exchange resins. Part VI: manganese(II)/H+/Lewatit K2621. Rev. Metal. 54 (2), e116.

Alguacil, F.J. (2018b). The removal of toxic metals from liquid effluents by ion exchange resins. Part VII: manganese(VII)/H+/Amberlite 958. Rev. Metal. 54 (3), e125.

Alguacil, F.J., Escudero, E. (2018). The removal of toxic met­als from liquid effluents by ion exchange resins. Part VIII: arsenic(III)/OH-/Dowex 1x8. Rev. Metal. 54 (4), e132.

Alguacil, F.J. (2019a). The removal of toxic metals from liq­uid effluents by ion exchange resins. Part IX: lead(II)/H+/Amberlite IR-120. Rev. Metal. 55 (1), e138.

Alguacil, F.J. (2019b). The removal of toxic metals from liquid effluents by ion exchange resins. Part X: antimony(III)/H+/Ionac SR7. Rev. Metal. 55 (3), e152.

Alguacil, F.J. (2019c). The removal of toxic metals from liquid effluents by ion exchange resins. Part XI: cobalt(II)/H+/Lewatit TP260. Rev. Metal. 55 (4), e154.

Haghdoost, Gh., Aghaie, H., Monajjemi, M. (2017). Investiga­tion of Langmuir and Freundlich Adsorption Isotherm of Co2+ Ion by Micro Powder of Cedar Leaf. Orient. J. Chem. 33 (3), 1569-1574. https://doi.org/10.13005/ojc/330363

Ho, Y.-S. (2006). Review of second-order models for adsorption systems. J. Hazard. Mater. 136 (3), 681-689. https://doi.org/10.1016/j.jhazmat.2005.12.043 PMid:16460877

Fu, Y., Sun, Y., Chen, Z., Ying, S., Wang, J., Hu, J. (2019). Functionalized magnetic mesoporous silica/poly(m-ami­nothiophenol) nanocomposite for Hg(II) rapid uptake and high catalytic activity of spent Hg(II) adsorbent. Sci. Total Environ. 691. 664-674. https://doi.org/10.1016/j.scitotenv.2019.07.153 PMid:31325865

López Diaz-Pavon, A., Cerpa, A., Alguacil, F.J. (2014). Process­ing of indium(III) solutions via ion exchange with Lewatit K-2621 resin. Rev. Metal. 50 (2), e010. https://doi.org/10.3989/revmetalm.010

USGS (2019). Mercury Statistics and Information. Mineral Commodity Summaries, US Geological Survey. (Accesed July 2019) www.usgs.gov/centers/nmic/mercury-statistics-and-information.

Published

2020-03-30

How to Cite

Alguacil, F. J., & Escudero, E. (2020). The removal of toxic metals from liquid effluents by ion exchange resins. Part XII: Mercury(II) /H+/Lewatit SP112. Revista De Metalurgia, 56(1), e160. https://doi.org/10.3989/revmetalm.160

Issue

Section

Articles

Most read articles by the same author(s)

1 2 > >>