Mechanical properties of AZ31 alloy processed by a green metallurgy route

Authors

  • F. D’Errico Politecnico di Milano, Department of Mechanical Engineering
  • G. Garcés Centro Nacional de Investigaciones Metalúrgicas (CENIM-CSIC)
  • M. Hofer Buhler AG, New Technologies AMT Advanced Materials Division
  • S. K. Kim Casting Research Center, Korea Institute of Industrial Technology (KITECH)
  • P. Pérez Centro Nacional de Investigaciones Metalúrgicas (CENIM-CSIC)
  • S. Cabeza Centro Nacional de Investigaciones Metalúrgicas (CENIM-CSIC)
  • P. Adeva Centro Nacional de Investigaciones Metalúrgicas (CENIM-CSIC)

DOI:

https://doi.org/10.3989/revmetalm.1315

Keywords:

Eco-Magnesium, AZ31, Microstructure, Mechanical properties

Abstract


Recently it has been proved that molding of defect-free components of various commercial alloys of magnesium can be carried out succesfully when small amounts of CaO are added to the melt, making unnecessary the use of SF6 coverage. In the case of AZ alloys, this process also remarkably improves their mechanical properties not only by the greater cleaning of alloys but also by the formation of CaAl2 phase. This work, part of the Green project Metallurgy (http://www.green-metallurgy.eu) funded by the European Union (LIFE+2009), studies the influence of different CaO additions on the microstructure and mechanical properties of AZ31 Eco-Mg alloy. The alloy was processed by a conventional route involving extrusion of as-cast rods as well as by a powder metallurgy route (PM) using chips as starting material. The objective was to analyze the viability of recycling machining chips to manufacture components for the automobile industry and transportation in general, because of its low cost and environmental impact. It has been demostrated that alloys processed from chips exhibit the highest tensile stress values, close to 320 MPa.

Downloads

Download data is not yet available.

References

[1] J.K. Lee y S.K. Kim, Trans. Nonferrous Metals Society of China 21, 1 (2011) 23-27. http://dx.doi.org/10.1016/S1003-6326(11)61054-6

[2] S.K. Kim, J.K. Lee, Y. Yoon y H. Jo, J. Mater. Process. Tech. 187-188 (2007) 757-760. http://dx.doi.org/10.1016/j.jmatprotec.2006.11.172

[3] (http://www.green-metallurgy.eu): © 2011 Green Metallurgy Innovation.

[4] J.K. Lee, H. Jo y S.K. Kim, Rare Metals 25 (2006) 155-159. http://dx.doi.org/10.1016/S1001-0521(08)60072-8

[5] G. Levi, S. Avraham, A. Zilverov y M. Bamberger, Acta Mater. 54 (2006) 521-530. http://dx.doi.org/10.1016/j.actamat.2005.09.023

[6] Y. Nan Zhang, D. Kervokov, L. Jian, E. Essadiqui y M. Medraj, Intermetallics 18 (2010) 2.404-2.411.

[7] Magnesium and Magnesium alloys, ASM Specialty Handbook, Ed. M.M. Avedesian y H. Baker, ASM International, 1999, p. 172.

[8] S. Cabeza Sánchez, Máster Oficial en Materiales Estructurales para las Nuevas Tecnologías, URJC y UC3M, Junio, 2010.

Downloads

Published

2013-12-30

How to Cite

D’Errico, F., Garcés, G., Hofer, M., Kim, S. K., Pérez, P., Cabeza, S., & Adeva, P. (2013). Mechanical properties of AZ31 alloy processed by a green metallurgy route. Revista De Metalurgia, 49(6), 405–415. https://doi.org/10.3989/revmetalm.1315

Issue

Section

Articles

Most read articles by the same author(s)

1 2 > >>