La eliminación de metales tóxicos presentes en efluentes líquidos mediante resinas de cambio iónico. Parte XVIII: Vanadium(V)/H + /Amberlite 958

Autores/as

DOI:

https://doi.org/10.3989/revmetalm.227

Palabras clave:

Amberlite 958, Efluentes líquidos, Eliminación, Nanotubos de carbono de pared múltiple, Vanadio(V)

Resumen


La resina de cambio iónico Amberlite 958 se ha empleado en la eliminación de vanadio(V) de disoluciones acuosas. La experimentación se ha llevado a cabo bajo distintas condiciones hidrodinámicas y químicas: variación de la velocidad de agitación, pH del medio acuoso, dosificación de la resina, concentración del metal y temperatura. La carga del metal en la resina depende del pH de la disolución acuosa, y por lo tanto, de las especies de vanadio(V) presentes en este medio, el proceso de intercambio iónico tiene un carácter endotérmico. La carga del metal en la resina se ha modelado empleando distintos modelos y condiciones experimentales: cinética de carga (velocidad de agitación), mecanismo de carga (concentración de vanadio) e isotermas de carga (dosificación de la resina). Asimismo, se ha investigado acerca del uso de nanotubos de carbono de pared múltiple en la eliminación de vanadio(V) del medio acuoso. El metal cargado en la resina puede ser eluido empleando disoluciones ácidas.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Abhilasha, Agarwal, H., Meshram, P., Meshram, R.B., Jha, S., Patel, J.N., Soni, M., Rokkam, K., Mashruwala, S. (2021). Green process for recovery of vanadium from hazardous spent contact process catalyst by oxalic acid: kinetics and mechanism. Sep. Sci. Technol. 56 (18), 3183-3200. https://doi.org/10.1080/01496395.2021.1878222

Alguacil, F.J., Cobo, A. (1998). Solvent extraction equilibrium of nickel with LIX 54. Hydrometallurgy 48 (3), 291-299. https://doi.org/10.1016/S0304-386X(97)00103-5

Alguacil, F.J., Coedo, A.G., Dorado, T., Padilla, I. (2002). The removal of toxic metals from liquid effluents by ion exchange resins. Part I: chromium(VI)/sulphate/Dowex 1x8. Rev. Metal. 38 (4), 306-311. https://doi.org/10.3989/revmetalm.2002.v38.i4.412

Alguacil, F.J., Cobo, A., Alonso, M. (2002). Copper separation from nitrate/nitric acid media using Acorga M5640 extractant Part I: solvent extraction study. Chem. Eng. J. 85 (2-3), 259-263. https://doi.org/10.1016/S1385-8947(01)00166-8

Alguacil, F.J. (2002). The removal of toxic metals from liquid effluents by ion exchange resins. Part II: cadmium(II)/sulphate/Lewatit TP260. Rev. Metal. 38 (5), 348-352. https://doi.org/10.3989/revmetalm.2002.v38.i5.418

Alguacil, F.J. (2003). The removal of toxic metals from liquid effluents by ion exchange resins. Part III: copper(II)/sulphate/Amberlite 200. Rev. Metal. 39 (3), 205-209. https://doi.org/10.3989/revmetalm.2003.v39.i3.330

Alguacil, F.J., Lopez, F.A., Rodriguez, O., Martinez-Ramirez, S., Garcia-Diaz, I. (2016). Sorption of indium (III) onto carbon nanotubes. Ecotoxicol. Environ. Saf. 130, 81-86. https://doi.org/10.1016/j.ecoenv.2016.04.008 PMid:27085001

Alguacil, F.J. (2017a). The removal of toxic metals from liquid effluents by ion exchange resins. Part IV: chromium(III)/H+/Lewatit SP112. Rev. Metal. 53 (2), e093.

Alguacil, F.J. (2017b). The removal of toxic metals from liquid effluents by ion exchange resins. Part V: nickel(II)/H+/Dowex C400. Rev. Metal. 53 (4), e105.

Alguacil, F.J. (2018a). The removal of toxic metals from liquid effluents by ion exchange resins. Part VI: manganese(II)/H+/Lewatit K2621. Rev. Metal. 54 (2), e116.

Alguacil, F.J. (2018b). The removal of toxic metals from liquid effluents by ion exchange resins. Part VII: manganese(VII)/H+/Amberlite 958. Rev. Metal. 54 (3), e125.

Alguacil, F.J., Escudero, E. (2018). The removal of toxic metals from liquid effluents by ion exchange resins. Part VIII: arsenic(III)/OH/Dowex 1x8. Rev. Metal. 54 (4), e132. https://doi.org/10.3989/revmetalm.132

Alguacil, F.J. (2019a). The removal of toxic metals from liquid effluents by ion exchange resins. Part IX: lead(II)/H+/Amberlite IR120. Rev. Metal. 55 (1), e138.

Alguacil, F.J. (2019b). The removal of toxic metals from liquid effluents by ion exchange resins. Part X: antimony(III)/H+/Ionac SR7. Rev. Metal. 55 (3), e152.

Alguacil, F.J. (2019c). The removal of toxic metals from liquid effluents by ion exchange resins. Part XI: cobalt(II)/H+/Lewatit TP260. Rev. Metal. 55 (4), e154.

Alguacil, F.J., Escudero, E. (2020). The removal of toxic metals from liquid effluents by ion exchange resins. Part XII: mercury(II)/H+/Lewatit SP112. Rev. Metal. 56 (1), e160.

Alguacil, F.J. (2020a). The removal of toxic metals from liquid effluents by ion exchange resins. Part XIII: zinc(II)/H+/ Lewatit OC-1026. Rev. Metal. 56 (3), e172.

Alguacil, F.J. (2020b). The removal of toxic metals from liquid effluents by ion exchange resins. Part XIV: indium(III)/H+/Dowex-400. Rev. Metal. 56 (4), e184. https://doi.org/10.3989/revmetalm.184

Alguacil, F.J. (2021a). The removal of toxic metals from liquid effluents by ion exchange resins. Part XV: iron(II)/H+/Lewatit TP208. Rev. Metal. 57 (1), e190. https://doi.org/10.3989/revmetalm.190

Alguacil, F.J. (2021b). The removal of toxic metals from liquid effluents by ion exchange resins. Part XVI: iron(III)/H+/Lewatit TP208. Rev. Metal. 57 (3), e203. https://doi.org/10.3989/revmetalm.203

Alguacil, F.J., Escudero, E. (2021). The removal of toxic metals from liquid effluents by ion exchange resins. Part XVII: arsenic(V))/H+/Dowex 1x8. Rev. Metal. 58(2), e221. https://doi.org/10.3989/revmetalm.221

Aregay, G.G., Ali, J., Shahzad, A., Ifthikar, J., Oyekunle, D.T., Chen, Z. (2021). Application of layered double hydroxide enriched with electron rich sulfide moieties (S2O42-) for efficient and selective removal of vanadium (V) from diverse aqueous medium. Sci. Total. Environ. 792, 148543. https://doi.org/10.1016/j.scitotenv.2021.148543 PMid:34465035

Bao, S., Chen, Q., Zhang, Y., Tian, X. (2021). Optimization of preparation conditions of composite electrodes for selective adsorption of vanadium in CDI by response surface methodology. Chem. Eng. Res. Des. 168, 37-45. https://doi.org/10.1016/j.cherd.2021.01.032

Barceloux, D.G., Barceloux, D. (1999). Vanadium. J. Toxicol. Clinic. Toxicol. 37 (2), 265-278. https://doi.org/10.1081/CLT-100102425 PMid:10382561

Elbadawy, H.A. (2019). Adsorption and structural study of the chelating resin, 1,8-(3,6-dithiaoctyl)-4-polyvinyl benzenesulphonate (dpvbs) performance towards aqueous Hg(II). J. Mol. Liq. 277, 584-593. https://doi.org/10.1016/j.molliq.2018.12.134

Ghosh, S.K., Saha, R., Saha, B. (2015). Toxicity of inorganic vanadium compounds. Res. Chem. Intermed. 41, 4873-4897. https://doi.org/10.1007/s11164-014-1573-1

Hemavathy, R.R.V., Kumar, P.S., Suganya, S., Swetha, V., Varjani, S.J. (2019). Modelling on the removal of toxic metal ions from aquatic system by different surface modified Cassia fistula seeds. Bioresour. Technol. 281, 1-9. https://doi.org/10.1016/j.biortech.2019.02.070 PMid:30784996

Ju, J., Feng, Y., Li, H., Liu, S., Xu, C. (2021). Separation and recovery of V, Ti, Fe and Ca from acidic wastewater and vanadium-bearing steel slag based on a collaborative utilization process. Sep. Purif. Technol. 276, 119335. https://doi.org/10.1016/j.seppur.2021.119335

Le, M.N., Lee, M.S. (2021). A review on hydrometallurgical processes for the recovery of valuable metals from spent catalysts and life cycle analysis perspective. Min. Proc. Extract. Metall. Rev. 42 (5), 335-354. https://doi.org/10.1080/08827508.2020.1726914

Lee, J.-C., Kurniawan, Kim, E.Y., Chung, K.W., Kim, R., Jeon, H.S. (2021). A review on the metallurgical recycling of vanadium from slags: Towards a sustainable vanadium production. J. Mater. Res. Technol. 12, 343-364. https://doi.org/10.1016/j.jmrt.2021.02.065

Li, M., Zhang, B., Zou, S., Liu, Q., Yang, M. (2020). Highly selective adsorption of vanadium(V) by nano-hydrous zirconium oxide-modified anion exchange resin. J. Hazard. Mater. 384, 121386. https://doi.org/10.1016/j.jhazmat.2019.121386 PMid:31635822

Lopez Diaz-Pavon, A., Cerpa, A., Alguacil, F.J. (2014). Processing of indium(III) solutions via ion exchange with Lewatit K-2621 resin. Rev. Metal. 50 (2), e010. https://doi.org/10.3989/revmetalm.010

Luz, A.L., Wu, X., Tokar, E.J. (2018). Toxicology of inorganic carcinogens. Adv. Mol. Toxicol. 12, 1- 46. https://doi.org/10.1016/B978-0-444-64199-1.00002-6

Ma, Z., Fu, Q. (2009). Comparison of hypoglycemic activity and toxicity of vanadium (IV) and vanadium (V) absorbed in fermented mushroom of Coprinus comatus. Biol. Trace Elem. Res. 132, 278-284. https://doi.org/10.1007/s12011-009-8394-x PMid:19415184

Morales, D.V., Rivas, B.L. González, M. (2021). Poly(4-vinylbenzyl)trimethylammonium chloride) resin with removal properties for vanadium(v) and molybdenum(vi). a thermodynamic and kinetic study. J. Chil. Chem. Soc. 65, 5118-5124. https://doi.org/10.4067/S0717-97072021000105118

Peng, H., Qiu, H., Wang, C., Yuan, B., Huang, H., Li, B. (2021). Thermodynamic and kinetic studies on adsorption of vanadium with glutamic acid. ACS Omega 6 (33), 21563-21570. https://doi.org/10.1021/acsomega.1c02590 PMid:34471759 PMCid:PMC8388076

Peng, H., Guo, J., Li, B., Huang, H., Shi, W., Liu, Z. (2022). Removal and recovery of vanadium from waste by chemical precipitation, adsorption, solvent extraction, remediation, photo-catalyst reduction and membrane filtration. A review. Environ. Chem. Lett. 20, 1763-1776. https://doi.org/10.1007/s10311-022-01395-z

Puigdomenech, I. (2021). MEDUSA PROGRAM. www.kth.se/che/medusa.

Wołowicz, A., Hubicki, Z. (2022). Vanadium(V) Removal from aqueous solutions and real wastewaters onto anion exchangers and Lewatit AF5. Molecules 27 (17), 5432. https://doi.org/10.3390/molecules27175432 PMid:36080204 PMCid:PMC9457782

Ying, Z., Huo, M., Wu, G., Li, J., Ju, Y., Wei, Q., Ren, X. (2021). Recovery of vanadium and chromium from leaching solution of sodium roasting vanadium slag by stepwise separation using amide and EHEHPA. Sep. Purif. Technol. 269, 118741. https://doi.org/10.1016/j.seppur.2021.118741

Zhang, R., Leiviskä, T. (2020). Surface modification of pine bark with quaternary ammonium groups and its use for vanadium removal. Chem. Eng. J. 385, 123967. https://doi.org/10.1016/j.cej.2019.123967

Publicado

2022-12-27

Cómo citar

Alguacil, F. J. ., & Escudero, E. . (2022). La eliminación de metales tóxicos presentes en efluentes líquidos mediante resinas de cambio iónico. Parte XVIII: Vanadium(V)/H + /Amberlite 958. Revista De Metalurgia, 58(3), e227. https://doi.org/10.3989/revmetalm.227

Número

Sección

Artículos

Artículos más leídos del mismo autor/a

1 2 > >>